http://electronicdesign.com/print/passives/fixed-dc-dc-regulator-output-uses-digitally-controlled-potentiometer

Tamara Schmitz
Thu, 2009-10-01 (All day)

Digitally controlled potentiometers (DCPs) have become very popular in a wide variety of applications, including control, parameter adjustment, and signal processing. The digital pots replace mechanical potentiometers and provide advantages such as remote operation and programmability, higher resolution, a much smaller form factor, increased reliability, the ability to store multiple wiper positions, and lower total system cost.

A DCP can be used in many high-end and low-end applications to provide flexibility. For example, a dc-dc regulator can be implemented with a resistor divider in the feedback path to set up VOUT. Some high-end applications need to adjust the voltage to optimize the application’s performance, and that’s where the DCP comes in.

A typical buck dc-dc converter scheme includes a pulse-width modulation (PWM) driver, switches, an inductor, a filter, and a feedback divider (Fig. 1). The feedback voltage (FB) from the resistor divider R1 and R2 is a negative input for the error amplifier of the voltage control loop. In addition to the point-of-load regulation, the feedback divider also sets up the desired output voltage, VOUT. In other words, VOUT is programmable through an external resistor divider based on:

where VREF is a reference voltage and a positive input for the error amplifier.

The minimum output voltage can be set as low as VREF, according to Equation 1. The resistor divider ratio, the input voltage, and the maximum duty cycle determine the maximum output. The reference voltage, VREF, can be obtained from the PWM controller datasheet. Thus, making the feedback divider adjustable makes the dc-dc regulator also adjustable (Fig. 2).

The adjustable output voltage of the dc-dc regulator can be expressed by Equation 2, where R1 and R2 are fixed resistors, RW is the wiper resistance, RTOTAL is the total resistance of the DCP, code is a decimal code of wiper position, and n is the total number of wiper taps.

The advantage of having the DCP in serial with the R2 resistor, rather than in parallel, is easier calculation of dc-dc output. It also prevents the bandwidth limitation that’s specific for the DCP. The DCP terminals have a parasitic capacitance of 10 to 25 pF, shown in Figure 2 as CRW. Connecting any of the DCP terminals to the FB node will cause phase shift and may decrease dc-dc regulator performance, such as transient response and stability.

The right DCP should be chosen to meet the application requirements based on knowing the VOUT adjusting range and desired resolution. For example, we would like to adjust the VOUT output voltage of a dc-dc regulator, built on the ISL85001 PWM controller, from 0.8 to 3.3 V.

The values of the DCP total resistance (RTOTAL) and resistors R1 and R2 can be derived from Equation 2. For simplicity it can be overwritten as Equation 3, where the wiper resistance is counted together with the R2 serial resistor. The suggested value of the R2 resistor should be less or equal to 0.1 × RTOTAL to have a bigger adjusting range (Equation 3, again). The maximum VOUT will be at code = 0 (Equation 4) and the minimum VOUT will be at max code = n – 1 (Equation 5).

According to a sample datasheet (from the ISL85001), the internal VREF = 0.6 V and the recommended value for the R1 resistor is from 1 to 10 kΩ. Since the number of RTOTAL values of the DCPs are limited, let’s select the RTOTAL = 10 kΩ first and then find R1 and R2 (Equation 6):

R1= 4.5k
R2 = 1 kΩ

Thus, the ideal DCP for this example should have an RTOTAL resistance of 10 kΩ and minimum wiper resistance.

Other features should be considered in choosing the appropriate DCP, such as the digital interface, nonvolatile programmability, RTOTAL tolerance, and temperature coefficient (TCr). Most of the available DCPs on the market have ±20% RTOTAL tolerance from part to part. That means each dc-dc regulator requires calibration, and the calibrated value of the wiper position can be stored in nonvolatile memory.

The perfect solution for dc-dc margining uses a 1% precision DCP, like the ISL22317, which eliminates the necessity of individual calibration and provides 0 Ω of wiper resistance and low TCr. Figure 3shows the VOUT curve versus the ISL22317W tap position. Since Equation 2 is a hyperbola, the VOUT resolution per step changes with the tap position, from 50 mV per tap at the low end to 2 mV per tap at the high end of the DCP settings in our example.

The ISL22317 features low TCr and 0 Ω of wiper resistance, complementing Intersil’s compensation scheme while also providing precision resistance settings from –40°C to 125°C.

Fixed DC-DC Regulator Output Uses A Digitally Controlled Potentiometer的更多相关文章

  1. PID DC/DC Converter Controller Using a PICmicro Microcontroller

    http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1824&appnote=en011794 ...

  2. DC/DC与LDO的差别

    转自:http://bbs.eetop.cn/thread-459121-1-1.html 在平时的学习中,我们都有接触LDO和DC/DC这一类的电源产品,但作为学生的我们队这些东西可能了解不够深刻, ...

  3. Simple dc/dc converter increases available power in dual-voltage system

    The schematic in Figure 1 shows a way to increase the power available from a current-limited 5V supp ...

  4. Add margining capability to a dc/dc converter

    You can easily add margining capability—that is, the ability to digitally adjust the output voltage— ...

  5. [专业名词·硬件] 2、DC\DC、LDO电源稳压基本常识(包含基本原理、高效率模块设计、常见问题、基于nRF51822电源管理模块分析等)·长文

    综述先看这里 第一节的1.1简单介绍了DC/DC是什么: 第二节是关于DC/DC的常见的疑问答疑,非常实用: 第三节是针对nRF51822这款芯片电源管理部分的DC/DC.LDO.1.8的详细分析,对 ...

  6. Practice safe dc/dc converter

    Short-circuit protection is an obvious requirement for a power supply, especially when its load conn ...

  7. LT1946A-- Transformerless dc/dc converter produces bipolar outputs

    Dual-polarity supply provides ±12V from one IC VC (Pin 1): Error Amplifier Output Pin. Tie external ...

  8. DC DC降壓變換器ic 工作原理

    目前DC/DC轉化器大致可分為:升壓型dc dc變化器.降壓型dc dc變化器及可升壓又可降壓dc dc變換器.我們今天主要提一下降壓型dc dc變換器的原理: 見下圖降壓變換器原理圖如圖1所示, 當 ...

  9. DC DC電路電感的選擇

    注:只有充分理解電感在DC/DC電路中發揮的作用,才能更優的設計DC/DC電路.本文還包括對同步DC/DC及異步DC/DC概念的解釋.   DCDC電路電感的選擇 簡介 在開關電源的設計中電感的設計為 ...

随机推荐

  1. centos 6.5配置ftp服务器,亲测可用

    设置开机启动 1 chkconfig vsftpd on 启动服务 1 /sbin/service vsftpd start 配置FTP用户组/用户以及相应权限 添加用户组 1 groupadd ft ...

  2. Django 1.10文档中文版Part2

    目录 2.5 第一个Django app,Part 3:视图和模板 2.5.1 概览 2.5.2 编写更多的视图 2.5.3 编写能实际干点活的视图 2.5.4 404错误 2.5.5 使用模板系统 ...

  3. What does “=>” mean in import in scala?(转自StackOverflow问答)

      As others have mentioned, it's an import rename. There is however one further feature that proves ...

  4. hbase学习(一)hbase简介

    1.hadoop生态系统 2.hbase简介 非关系型数据库知识面扩展 cassandra.hbase.mongodb.redis couchdb,文件存储数据库 Neo4j非关系型图数据库 3.hb ...

  5. C# 中DateTime的各种使用

    获得当前系统时间: DateTime dt = DateTime.Now; Environment.TickCount可以得到“系统启动到现在”的毫秒值 DateTime now = DateTime ...

  6. 【Mac】appium的环境搭建

    1.下载appium并安装,进入官网下载即可 http://appium.io 2.下载安装pip,因为pip执行命令的安装,会出现某些包的下载失败,因此使用brew进行 https://pypi.o ...

  7. CentOS/RHEL Linux安装EPEL第三方软件源

    https://www.vpser.net/manage/centos-rhel-linux-third-party-source-epel.html

  8. TPC-H数据导入MySQL教程

    0. TPC-H是啥 TPC-H是TPC提供的一个benchmark,用来模拟一个现实中的商业应用,可以生成一堆虚构的数据,且自带一些查询,可以导入到各种数据库中来模拟现实需求,检查性能. 具体是怎样 ...

  9. 向SD卡写入树莓派的操作系统

    这是 meelo 原创的 玩转树莓派 系列文章 用到的工具: Win32 Disk Imager: sd卡读卡器  Raspbian操作系统镜像:下载地址 步骤1:下载操作系统的镜像 树莓派基金会的网 ...

  10. GUC-2 原子性

    import java.util.concurrent.atomic.AtomicInteger; /* * 一.i++ 的原子性问题:i++ 的操作实际上分为三个步骤“读-改-写” * int i ...