传送门

Description

给你一个长度为\(2n\)的数字,每次可以从左侧选一个数字,加入连接到一个数字\(A\)或另一个数字\(B\)后面。\(A,B\)初始为\(0\)。\(A\)与\(B\)必须恰好被连接\(n\)次。最大化\(A,B\)的和,输出方案

Input

第一行是\(n\),第二行是长度为\(2n\)的数字

Output

从左到右输出该数字第几位被如何处理。连接到\(A\)输出\(H\),连接到\(B\)输出\(M\)。

Hint

\(1~\leq~n~\leq~18\)

Solution

看起来像是个DP啊……

考虑如果正向DP的话,每次选择一个数,数字和增加多少依赖于之前那个数字选了多少。这显然是有后效性的,难以处理。

考虑反过来DP。

这样每次选一个数只依赖于之前选了多少位,可以直接设到状态里面。于是可以设\(f_{i,j}\)为\(A\)选了\(i\)位,\(B\)选了\(j\)位的数字和,转移显然。

Code

#include<cstdio>
#define rg register
#define ci const int
#define cl const long long typedef long long int ll; template <typename T>
inline void qr(T &x) {
rg char ch=getchar(),lst=' ';
while((ch > '9') || (ch < '0')) lst=ch,ch=getchar();
while((ch >= '0') && (ch <= '9')) x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
if(lst == '-') x=-x;
} namespace IO {
char buf[120];
} template <typename T>
inline void qw(T x,const char aft,const bool pt) {
if(x < 0) {x=-x,putchar('-');}
rg int top=0;
do {IO::buf[++top]=x%10+'0';} while(x/=10);
while(top) putchar(IO::buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T a,const T b) {return a > b ? a : b;}
template <typename T>
inline T mmin(const T a,const T b) {return a < b ? a : b;}
template <typename T>
inline T mabs(const T a) {return a < 0 ? -a : a;} template <typename T>
inline void mswap(T &_a,T &_b) {
T _temp=_a;_a=_b;_b=_temp;
} const int maxn = 40;
const int INF = 0x3f3f3f3f; int n,dn;
int MU[maxn];
ll frog[maxn][maxn],ten[maxn]={1};
char s[maxn];
bool pre[maxn][maxn]; void dfs(ci,ci); int main() {
qr(n);
scanf("%s",s+1);
dn=n<<1;
for(rg int i=dn;i;--i) MU[dn-i+1]=s[i]-'0';
for(rg int i=1;i<n;++i) ten[i]=ten[i-1]*10ll;
for(rg int i=0;i<maxn;++i) for(rg int j=0;j<maxn;++j) frog[i][j]=-INF;
frog[0][0]=0;
for(rg int i=0;i<=n;++i) {
for(rg int j=0;j<=n;++j) {
int len=i+j;
if(i) frog[i][j]=frog[i-1][j]+MU[len]*ten[i-1];
if(j) {
if(frog[i][j] < frog[i][j-1]+MU[len]*ten[j-1]) {
frog[i][j]=frog[i][j-1]+MU[len]*ten[j-1];pre[i][j]=true;
}
}
}
}
dfs(n,n);
putchar('\n');
return 0;
} void dfs(ci x,ci y) {
if((!x) && (!y)) return;
if(pre[x][y]) {putchar('H');dfs(x,y-1);}
else {putchar('M');dfs(x-1,y);}
}

Summary

在序列上的线性DP,当正向难以转移时,可以考虑反向DP。

【DP】【CF31E】 TV Game的更多相关文章

  1. T2980 LR棋盘【Dp+空间/时间优化】

    Online Judge:未知 Label:Dp+滚动+前缀和优化 题目描述 有一个长度为1*n的棋盘,有一些棋子在上面,标记为L和R. 每次操作可以把标记为L的棋子,向左移动一格,把标记为R的棋子, ...

  2. 【10.3校内测试【国庆七天乐!】】【DP+组合数学/容斥】【spfa多起点多终点+二进制分类】

    最开始想的暴力DP是把天数作为一个维度所以怎么都没有办法优化,矩阵快速幂也是$O(n^3)$会爆炸. 但是没有想到另一个转移方程:定义$f[i][j]$表示每天都有值的$i$天,共消费出总值$j$的方 ...

  3. 【DP+树状数组】BZOJ1264-[AHOI2006]基因匹配Match

    [题目大意] 给定n个数和两个长度为n*5的序列,两个序列中的数均有1..n组成,且1..n中每个数恰好出现5次,求两个序列的LCS. [思路] 预处理每个数字在a[i]中出现的五个位置.f[i]示以 ...

  4. BZOJ1079 [SCOI2008]着色方案 【dp记忆化搜索】

    题目 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难看 ...

  5. 【DP|多重背包可行性】POJ-1014 Dividing

    Dividing Time Limit: 1000MS Memory Limit: 10000K Description Marsha and Bill own a collection of mar ...

  6. COGS 862. 二进制数01串【dp+经典二分+字符串】

    862. 二进制数01串 ★   输入文件:kimbits.in   输出文件:kimbits.out   简单对比 时间限制:1 s   内存限制:128 MB USACO/kimbits(译 by ...

  7. CodeForces - 597C Subsequences 【DP + 树状数组】

    题目链接 http://codeforces.com/problemset/problem/597/C 题意 给出一个n 一个 k 求 n 个数中 长度为k的上升子序列 有多少个 思路 刚开始就是想用 ...

  8. hihocoder1475 数组分拆【DP+前缀和优化】

    思路: DP[ i ] 代表以 i 结尾的方案数. dp[i] += sum[i] - sum[j - 1] != 0 ? dp[j] : 0 ; 对于100%的数据,满足1<=N<=10 ...

  9. SPOJ130 【DP·背包选取特性】

    题意: 给你n个任务,每个任务有一个起始时间,持续时间,一个权值: 问你怎么分配得到最大值 思路: 数据好大..百度了一发意识到自己好菜啊!背包的特性. dp[i]代表前 i 个能构成的最大值. 对于 ...

  10. lightoj1145 【DP优化求方案】

    题意: 有一个k面的骰子,然后问你n个骰子朝上的面数字之和=s的方案: 思路: dp[i][j] 代表 前 i 个骰子组成 j 有多少种方案: 显然 dp[i][j] = dp[i - 1][j - ...

随机推荐

  1. jvm之对象创建过程

    常量池中定位类的符号引用                ↓ 检查符号引用所代表的类是否已被加载,解析和初始化过  →                 ↓                        ...

  2. Struts2(一.基本介绍,环境搭建及需求分析)

    Struts2框架开发 前言 开发工具:eclipse struts1:老项目使用较多,维护时需要用到 struts2:新项目使用较多 一.特点 1. 无侵入式设计 struts2 与 struts ...

  3. Vue 编程之路(一)——父子组件之间的数据传递

    最近公司的一个项目中使用 Vue 2.0 + element UI 实现一个后台管理系统的前端部分,属于商城类型.其中部分页面是数据管理页,所以有很多可以复用的表格,故引入自定义组件.在这里分享一下开 ...

  4. 常用monkey_app稳定性

    Monkey稳定性测试 1       前言 为方便快速上手Monkey测试相关问题,针对测试中发现的Monkey问题进行了整理总结,供定位Monkey参考. 2       关于Monkey测试 2 ...

  5. 从零开始的Python学习Episode 13——常用模块

    模块 一.time模块 时间戳(timestamp) :时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量. 元组(struct_time)   :struct_time元组共有9 ...

  6. 用Tensorflow完成简单的线性回归模型

    思路:在数据上选择一条直线y=Wx+b,在这条直线上附件随机生成一些数据点如下图,让TensorFlow建立回归模型,去学习什么样的W和b能更好去拟合这些数据点. 1)随机生成1000个数据点,围绕在 ...

  7. CF刷刷水题找自信 2

    CF 1114A  Got Any Grapes(葡萄)? 题目意思:给三个人分葡萄,三个人对葡萄的颜色有一些要求,问所准备的三种颜色的葡萄能否满足三人的要求. 解题意思:直接按条件判断即可. #in ...

  8. git中的重要指令

    git命令 任何操作都需要以 git 命令为开头 本地操作: git init 初始化一个本地仓库 新建为 master主分支 git status 查看当前分支状态 git add <文件名& ...

  9. 学习调用第三方的WebService服务

    互联网上面有很多的免费webService服务,我们可以调用这些免费的WebService服务,将一些其他网站的内容信息集成到我们的应用中显示,下面就以查询国内手机号码归属地为例进行说明. 首先安利一 ...

  10. Nginx 使用札记

    nginx是什么? nginx是俄罗斯人 Igor Sysoev为俄罗斯访问量第二的Rambler.ru站点开发的一个十分轻量级的HTTP服务器.它是一个高性能的HTTP和反向代理服务器,同时也可以作 ...