算法简介

Miller-Rabin算法,这是一个很高效的判断质数的方法,可以在用\(O(logn)\) 的复杂度快速判断一个数是否是质数。它运用了费马小定理和二次探测定理这两个筛质数效率极高的方法。

费马小定理判质数

\(a^{p - 1}\ ≡\ 1\ mod\ p\)

这个定理在 \(p\) 为质数的时候是成立的,所以我们可以如果要判断 \(p\) 是否是质数,可以 \(rand\) 几个 \(a\) 值然后照着这个式子来算,如果算出来不是 \(1\) 那说明 \(p\) 一定不是质数。

但在我们的自然数中,如果照着这个式子算出来的答案为1,也是有可能不是质数的。更有一类合数,它用费马小定理不管 rand 什么数都判不掉。这类合数称为 Carmichael数(卡迈克尔数),其中一个例子就是561(哇,居然这么小)。

二次探测定理

因为Carmichael数的存在,使得我们难以高效判断质数,所以我们还需要加入第二种判断方法使这种伪算法更优秀!而二次探测无疑就是为我们量身定制的算法,因为它要建立在同余式右边为1的基础上(而我们的费马小定理不正好满足了要求吗?)

若 \(b^2≡1\ mod\ p\) 且 \(p\) 为质数 \(=>\) 则 \(p\) 一定可以被 \(b−1\) 和 \(b+1\) 其中一个整除

这是二次探测定理,原理很简单,我们将上面的同余式左右都减1,根据平方差公式可以得出 \((b−1)(b+1)≡\ 0\ mod\ p\) 这其实就代表着等式左边是模数的倍数,但若模数p是质数,则 \((b−1)\) 和 \((b+1)\) 必定存在一个是 \(p\) 的倍数,所以要么 \(b−1=p\ (b=1)\) 或者 \(b+1=p\ (b=p−1)\) 如果不满足则 \(p\) 一定不是质数!然后我们还可以发现若 \(b=1\) 我们又可以进行新一轮二次探测!

根据这个道理,我们可以进行二次探测:因为 \(a^{p−1}≡1\mod\ p\) 如果 \(p−1\) 为偶数的话就可以化成: \(a^{(\frac{p−1}2)^2}≡1\ mod\ p\) 这样就变成了二次探测的基本式。

typedef long long ll;
typedef unsigned long long ull;
typedef long double lb;
inline ll ksc(ull x, ull y, ll p) { // O(1)快速乘(防爆long long)
return (x * y - (ull)((lb)x / p * y) * p + p) % p;
} inline ll ksm(ll x, ll y, ll p) { //快速幂
ll res = 1;
while (y) {
if (y & 1) res = ksc(res, x, p);
x = ksc(x, x, p);
y >>= 1;
}
return res;
} inline bool mr(ll x, ll p) {
if (ksm(x, p - 1, p) != 1) return 0; //费马小定理
ll y = p - 1, z;
while (!(y & 1)) { //一定要是能化成平方的形式
y >>= 1;
z = ksm(x, y, p); //计算
if (z != 1 && z != p - 1) return 0; //不是质数
if (z == p - 1) return 1; //一定要为1,才能继续二次探测
}
return 1;
} inline bool prime(ll x) {
if (x < 2) return 0;
if (x == 2 || x == 3 || x == 5 || x == 7 || x == 43) return 1;
return mr(2, x) && mr(3, x) && mr(5, x) && mr(7, x) && mr(43, x);
}

这样子加上二次探测之后,明显就能高效很多,基本上卡不了,大概要每 \(10^{10}\) 个数才会出现一个判不掉的,这个概率可以说十分微小,可以忽略!

Miller-Rabin 素数检验算法的更多相关文章

  1. Miller Rabin素数检测与Pollard Rho算法

    一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...

  2. POJ1811_Prime Test【Miller Rabin素数测试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  3. POJ2429_GCD &amp; LCM Inverse【Miller Rabin素数測试】【Pollar Rho整数分解】

    GCD & LCM Inverse Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9756Accepted: 1819 ...

  4. POJ1811_Prime Test【Miller Rabin素数測试】【Pollar Rho整数分解】

    Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time ...

  5. HDU1164_Eddy&#39;s research I【Miller Rabin素数测试】【Pollar Rho整数分解】

    Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  6. Miller Rabin素数检测

    #include<iostream> #include<cstdio> #include<queue> #include<cstring> #inclu ...

  7. 关于素数:求不超过n的素数,素数的判定(Miller Rabin 测试)

    关于素数的基本介绍请参考百度百科here和维基百科here的介绍 首先介绍几条关于素数的基本定理: 定理1:如果n不是素数,则n至少有一个( 1, sqrt(n) ]范围内的的因子 定理2:如果n不是 ...

  8. GCDLCM 【米勒_拉宾素数检验 (判断大素数)】

    GCDLCM 题目链接(点击) 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some ...

  9. 【数论基础】素数判定和Miller Rabin算法

    判断正整数p是否是素数 方法一 朴素的判定   

随机推荐

  1. Centos-分割文件-split

    split 分割文件,将一个文件分割为多个 相关选项 -b 指定文件大小,可以在size后面添加单位后缀,b表示512字节,k表示1KB,m表示MB -n 指定分割文件的长度,默认为1000行 -d ...

  2. python图像的绘制

    转载:https://blog.csdn.net/haoji007/article/details/52063168 实际上前面我们就已经用到了图像的绘制,如: io.imshow(img) 这一行代 ...

  3. 阅读源码,从ArrayList开始

    前言 为啥要阅读源码?一句话,为了写出更好的程序. 一方面,只有了解了代码的执行过程,我们才能更好的使用别人提供的工具和框架,写出高效的程序.另一方面,一些经典的代码背后蕴藏的思想和技巧很值得学习,通 ...

  4. volatile型变量语义讲解一 :对所有线程的可见性

    volatile型变量语义讲解一 :对所有线程的可见性 一.volatile变量语义一的概念 当一个变量被定义成volatile之后,具备两个特性: 特性一:保证此变量对所有线程的可见性.这里的&qu ...

  5. 本文介绍如何使用 Docker Swarm 来部署 Nebula Graph 集群,并部署客户端负载均衡和高可用

    本文作者系:视野金服工程师 | 吴海胜 首发于 Nebula Graph 论坛:https://discuss.nebula-graph.com.cn/t/topic/1388 一.前言 本文介绍如何 ...

  6. MySQL5.7版本sql_mode=only_full_group_by问题解决办法

    原因分析:MySQL5.7版本默认设置了 mysql sql_mode = only_full_group_by 属性,导致报错. 1.查看sql_mode SELECT @@sql_mode; 2. ...

  7. java性能分析之火焰图

    原由 最近因为kafka.zookeeper.ES和相关的Java应用的内存问题搞的头大,做运维将近4年,对Java调优.性能方面的知识了解的少之又少,是时候下定决心来对他多一个学习了.不能一口吃成一 ...

  8. MeteoInfoLab脚本示例:站点数据散点图

    这里演示从micaps第一类数据(地面全要素观测)中读取一个变量(用DimDataFile类的stationdata方法),然后maskout掉中国区域之外的数据,利用scatterm函数绘制散点图. ...

  9. 【C语言C++编程学习笔记】一种很酷的 C 语言技巧,灵活运用编程技巧让你写代码事半功倍!

    C语言常常让人觉得它所能表达的东西非常有限.它不具有类似第一级函数和模式匹配这样的高级功能.但是C非常简单,并且仍然有一些非常有用的语法技巧和功能,只是没有多少人知道罢了. ☆ 指定的初始化 很多人都 ...

  10. php生成签名

    // 生成签名private function makeSignature($params){ foreach ($params as $key=>$value){ $arr[$key] = $ ...