题目大意

鹰蛋问题.$

n\(个蛋,\)m\(层楼. 存在一层楼\)E\(,使得\)E\(以及\)E\(以下的楼层鹰蛋都不会摔碎,问最坏情况下最少多少次能够知道\)E$.

非常经典的模型,初看题目根本想不到用什么方法做,一开始可能会想到二分答案、单调队列和一些线性的东西。但是明确的说:这些都是不可行的!

正确的解法其实是\(DP\)

设计状态:

\(f[i][j]\)表示\(i\)个蛋,确定\(j\)层楼的\(E\)的答案. 如果当前在第\(k\)层扔蛋,两种可能:

  

  1. 蛋碎了,那么还剩下\(i-1\)个蛋,第\(j\)层不是\(E\)层,还有\(j-1\)层需要确定,可以从\(f[i-1][j-1]\)转移而来.

       
  2. 蛋没碎,还剩下\(i\)个蛋,第\(k\)层以下都不可能是\(E\)层了,还剩下\(j-k\)层需要确定.那么从\(f[i][j-k]\)转移而来. 注意,这里的从上往下数\(j-k\)层和从下往上数\(j-k\)层本质上是没有区别的,所以可以把这\(j-k\)层看作一个新的高\(j-k\)层的楼.

       

    接着就是重中之重了,如何转移? 事情总是朝着最坏的方向发展的. 第\(k\)层会不会摔碎实际上是不能确定的!要从最坏的状态转移而来!那么状态转移方程就是:\(f[i][j]=min(max(f[i-1][j-1],f[i][j-k])+1,f[i][j])\).

然后就可以很快写出代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;
int T , cas , n , m ;
int f[ 3005 ][ 3005 ] ;
inline void solve () {
memset ( f , 0x3f , sizeof ( f ) ) ;
for ( int i = 1 ; i <= n ; i ++ ) f[ i ][ 0 ] = 0 ;
for ( int i = 1 ; i <= m ; i ++ ) f[ 1 ][ i ] = i ;
for ( int i = 1 ; i <= n ; i ++ ) {
for ( int j = 1 ; j <= m ; j ++ ) {
for ( int k = 1 ; k <= j ; k ++ )
f[ i ][ j ] = min ( f[ i ][ j ] , max ( f[ i - 1 ][ k - 1 ] , f[ i ][ j - k ] ) + 1 ) ;
}
}
}
signed main () {
scanf ( "%d" , &T ) ;
while ( T -- ) {
scanf ( "%d%d%d" , &cas , &n , &m ) ;
solve () ;
printf ( "%d %d\n" , cas , f[ n ][ m ] ) ;
}
return 0 ;
}

[POJ3783]Balls 题解的更多相关文章

  1. poj3783 Balls

    Balls Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 1110   Accepted: 721 Description ...

  2. CF755G PolandBall and Many Other Balls 题解

    从神 Karry 的题单过来的,然后自己瞎 yy 了一个方法,看题解区里没有,便来写一个题解 一个常数和复杂度都很大的题解 令 \(dp_{i,j}\) 为 在 \(i\) 个球中选 \(j\) 组的 ...

  3. CF850F Rainbow Balls 题解

    考虑最后变成哪一种颜色. 设 \(s = \sum\limits_{i=1}^n a_i\) 设现在有 \(k\) 种当前颜色, 需要全部变成该种颜色, 期望步数为 \(f_k\). 考虑状态转移.设 ...

  4. 蓝桥杯-摔手机问题【dp】

    非常详细的题解:戳这里 例题:poj-3783 Balls Balls Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 115 ...

  5. HDU5781 ATM Mechine(DP 期望)

    应该是machine 和POJ3783 Balls类型相似. 现在上界为i元,猜错次数最多为j时,开始猜测为k元,有两种情况: 1 猜中:(i - k + 1) * dp[i - k][j] 2 猜不 ...

  6. 题解-CF755G PolandBall and Many Other Balls

    题面 CF755G PolandBall and Many Other Balls 给定 \(n\) 和 \(m\).有一排 \(n\) 个球,求对于每个 \(1\le k\le m\),选出 \(k ...

  7. POJ 3687 Labeling Balls(拓扑排序)题解

    Description Windy has N balls of distinct weights from 1 unit to N units. Now he tries to label them ...

  8. 【题解】Popping Balls AtCoder Code Festival 2017 qual B E 组合计数

    蒟蒻__stdcall终于更新博客辣~ 一下午+一晚上=一道计数题QAQ 为什么计数题都这么玄学啊QAQ Prelude 题目链接:这里是传送门= ̄ω ̄= 下面我将分几个步骤讲一下这个题的做法,大家不 ...

  9. 洛谷 CF399B【Red and Blue Balls】题解

    n年没有更博客:我总结出了规律,当学的东西很难得时候都去学习,没有时间写博客,只有 内容对于我这种蒟蒻友好,又让我非常闲的慌时才写博客,这种博客以后也没有价值(也有些是做完一道题有成就感写的) 最近内 ...

随机推荐

  1. CSS文本控制

    CSS文本控制 文本基础设置 字体设置 font-family可定义多个字体,系统会以从左至右的顺序进行查找,如左侧字体不存在,就往右侧找. 为什么要这么做呢?如果你只用了一种字体,而恰好人家电脑上没 ...

  2. Python数据可视化:画饼状图、折线图、圈图

    前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. from math import pi import matplotlib ...

  3. bzoj1339[Baltic2008]Mafia*

    bzoj1339[Baltic2008]Mafia 题意: 匪徒准备从一个车站转移毒品到另一个车站,警方准备进行布控.对于每个车站进行布控都需要一定的代价,现在警方希望使用最小的代价控制一些车站,使得 ...

  4. LeetCode 84 | 单调栈解决最大矩形问题

    本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是LeetCode专题第52篇文章,我们一起来看LeetCode第84题,Largest Rectangle in Histogram( ...

  5. 题解 CF296B 【Yaroslav and Two Strings】

    题目 传送门 题目大意 如果两个只包含数字且长度为 \(n\) 的字符串 \(s\) 和 \(w\) 存在两个数字 \(1≤i,j≤n\),使得 \(s_i<w_i,s_j>w_j\) , ...

  6. 食用Win系统自带的PowerShell登录服务器

    运行powershell输入ssh root@你的服务器ip -p你的端口 切换rm ~/.ssh/known_hosts cmd 运行 ping 你的ip -t一直ping ctrl+c停止 tra ...

  7. MySQL数据库---前言

    MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,目前属于 Oracle 旗下公司.MySQL 最流行的关系型数据库管理系统,在 WEB 应用方面MySQL是最好的 RDBMS ...

  8. static关键字和final关键字

    static关键字和final关键字 static(静态) 作用 用来修饰属性.方法.代码块.内部类 static修饰属性 表示静态变量(类变量) 按是否使用static修饰,属性的分类 静态属性 当 ...

  9. Oracle常见错误以及解决方法

    前言: 本博客为博主在开发中遇到的问题,为大家提供解决方法,如需转载,请注明来源,谢谢! 问题一: 第一次用PLSQL Developer连接数据库,若用sys用户登录并操作则正常,若用普通用户比如x ...

  10. jmeter接口测试 -- status==400(Bad Request)

    一.接口请求信息 二.错误的jmeter接口请求 1.请求内容 2.响应内容 三.正确的接口请求 1.看回原本的接口请求信息,company_id = null  .这里也就不能空 四.原因分析 1. ...