省选模拟赛 4.26 T1 dp 线段树优化dp
LINK:T1
算是一道中档题 考试的时候脑残了 不仅没写优化 连暴力都打挂了。
容易发现一个性质 那就是同一格子不会被两种以上的颜色染。(颜色就三种.
通过这个性质就可以进行dp了.先按照左端点排序。
设f[i]表示前i个画笔必选的最大价值。
枚举决策j 分类讨论相交还是包含 还是相离。
其中包含的情况没必要讨论 相交需要比对一下颜色再进行转移 不过我写的时候多打一个东西导致爆零.
值得一提的是 对于相交的情况 相交的部分不会被之前转移的线段给交上去 可以证明这样不是最优的。
所以这样dp是正确的。
code:
const int MAXN=100010;
int n,m,s1,s2,flag;
ll ans,f[MAXN];
struct wy{int x,y,c;}t[MAXN];
inline int cmp(wy a,wy b){return a.x<b.x;}
int main()
{
freopen("T1.in","r",stdin);
freopen("T1.out","w",stdout);
get(n);get(m);get(s1);get(s2);
rep(1,m,i)
{
int get(c),get(x),get(y);
t[i]=(wy){x,y,c};
if(!flag)flag=c;
else if(flag!=c)flag=INF;
}
sort(t+1,t+1+m,cmp);
if(flag!=INF)
{
ll ans=0;int mx=0;
rep(1,m,i)
{
if(mx>=t[i].y)continue;
if(t[i].x<mx)ans+=((ll)t[i].y-mx)*s1;
else ans+=(ll)((ll)t[i].y-t[i].x+1)*s1;
mx=t[i].y;
}
putl(ans);
return 0;
}
//putl(ans);
if(m<=1000)
{
rep(1,m,i)
{
rep(0,i-1,j)
{
if(t[i].y<=t[j].y)continue;
if(t[i].x>t[j].y)
{
f[i]=max(f[i],f[j]+((ll)t[i].y-t[i].x+1)*s1);
continue;
}
int ww=(t[i].c!=t[j].c);
f[i]=max(f[i],f[j]+((ll)t[i].y-t[j].y)*s1-((ll)t[j].y-t[i].x+1)*ww*(s1+s2));
}
ans=max(ans,f[i]);
}
putl(ans);return 0;
}
return 0;
}
考虑正解。其实正解很好想 不过我没胆子写。
容易 发现可以分类讨论。对于相离的情况 写一个线段树 在右端点放值 查询查左端点-1即可。
对于相交的情况 还是分类讨论 考虑如果是同颜色的话查 还是右端点放值 区间内查 放值的具体形式展开上述的dp式即可。
对于不同颜色相交 同样展开上述dp式 在线段树里做即可。
第一种情况需要一颗线段树 第二种情况需要三颗线段树 第三种情况同样需要三种 简单的做法是 三种不同颜色各自维护相交的情况。
由于所有的线段树维护的东西相同 所以可以使用指针做这件事情 也可以使用结构体。
const int MAXN=100010;
int n,m,top;ll s1,s2;
int b[MAXN<<1];
struct wy{int x,y,c;}t[MAXN];
inline int cmp(wy a,wy b){return a.x<b.x;}
struct jl
{
ll s[MAXN<<3];
inline void cle(){memset(s,0xcf,sizeof(s));}
inline void change(int p,int l,int r,int w,ll x)
{
if(l==r){s[p]=max(s[p],x);return;}
int mid=(l+r)>>1;
if(w<=mid)change(zz,l,mid,w,x);
else change(yy,mid+1,r,w,x);
s[p]=max(s[zz],s[yy]);
}
ll ask(int p,int l,int r,int L,int R)
{
if(L<=l&&R>=r)return s[p];
int mid=(l+r)>>1;
if(R<=mid)return ask(zz,l,mid,L,R);
if(L>mid)return ask(yy,mid+1,r,L,R);
return max(ask(zz,l,mid,L,R),ask(yy,mid+1,r,L,R));
}
}f[3],g[3],s;
int main()
{
freopen("1.in","r",stdin);
//freopen("T1.out","w",stdout);
get(n);get(m);get(s1);get(s2);
rep(1,m,i)
{
int get(c),get(x),get(y);
t[i]=(wy){x,y,c-1};
b[++top]=x;b[++top]=y;
}
sort(b+1,b+1+top);
int num=0;
rep(1,top,i)if(i==1||b[i]!=b[i-1])b[++num]=b[i];
rep(1,m,i)
{
t[i].x=lower_bound(b+1,b+1+num,t[i].x)-b;
t[i].y=lower_bound(b+1,b+1+num,t[i].y)-b;
}
sort(t+1,t+1+m,cmp);
s.cle();
rep(0,2,i)f[i].cle(),g[i].cle();
s.change(1,0,num,0,0);
rep(1,m,i)
{
ll ww=s.ask(1,0,num,0,t[i].x-1)+(b[t[i].y]-b[t[i].x]+1)*s1;
rep(0,2,j)
{
if(t[i].c==j)//同色转移用f
ww=max(ww,f[j].ask(1,0,num,t[i].x,t[i].y)+b[t[i].y]*s1);
else //不同色用g
ww=max(ww,g[j].ask(1,0,num,t[i].x,t[i].y)+b[t[i].x]*(s1+s2)-s1-s2+b[t[i].y]*s1);
}
s.change(1,0,num,t[i].y,ww);
f[t[i].c].change(1,0,num,t[i].y,ww-b[t[i].y]*s1);
g[t[i].c].change(1,0,num,t[i].y,ww-b[t[i].y]*(s1+s1+s2));
}
putl(s.s[1]);
return 0;
}
省选模拟赛 4.26 T1 dp 线段树优化dp的更多相关文章
- 省选模拟赛 Problem 3. count (矩阵快速幂优化DP)
Discription DarrellDarrellDarrell 在思考一道计算题. 给你一个尺寸为 1×N1 × N1×N 的长条,你可以在上面切很多刀,要求竖直地切并且且完后每块的长度都是整数. ...
- 4.11 省选模拟赛 序列 二分 线段树优化dp set优化dp 缩点
容易想到二分. 看到第一个条件容易想到缩点. 第二个条件自然是分段 然后让总和最小 容易想到dp. 缩点为先:我是采用了取了一个前缀最小值数组 二分+并查集缩点 当然也是可以直接采用 其他的奇奇怪怪的 ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$
正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- zoj 3349 dp + 线段树优化
题目:给出一个序列,找出一个最长的子序列,相邻的两个数的差在d以内. /* 线段树优化dp dp[i]表示前i个数的最长为多少,则dp[i]=max(dp[j]+1) abs(a[i]-a[j])&l ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
- POJ 2376 Cleaning Shifts (线段树优化DP)
题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...
随机推荐
- 平常我们是如何区分css中class和id之间有什么区别的?
我们平常在用DIV+CSS制作html网页页面时,常会用到class 和id来选择调用CSS样式属性.对学习CSS的新手来说class和id可能比较模糊,同时不知道什么时候该用class,什么时候又用 ...
- Numerical Sequence (Hard vision) 题解
The only difference between the easy and the hard versions is the maximum value of \(k\). You are gi ...
- Subset POJ - 3977(折半枚举+二分查找)
题目描述 Given a list of N integers with absolute values no larger than 10 15, find a non empty subset o ...
- 有点愧疚,今天把unity官方骗了...
今天下午2点,突然给我发了一封邮件说我违规: Unity Technologies Hello, Your Account: *@*.net has been suspended and you ca ...
- Mysql基础(八):MySQL 表的一对一、一对多、多对多问题
将实体与实体的关系,反应到最终数据库表的设计上,将关系分为三种:一对一,一对多(多对一)和多对多,所有的关系都是表与表之间的关系; 一对一 一对一:一张表的一条记录只能与另外一条记录进行对应,反之亦然 ...
- 05 drf源码剖析之认证
05 drf源码剖析之认证 目录 05 drf源码剖析之认证 1. 认证简述 2. 认证的使用 3. 源码剖析 4. 总结 1. 认证简述 当我们通过Web浏览器与API进行交互时,我们可以登录,然后 ...
- 德布鲁因序列与indexing 1
目录 写在前面 标记left-most 1与right-most 1 确定位置 德布鲁因序列(De Bruijn sequence) 德布鲁因序列的使用 德布鲁因序列的生成与索引表的构建 参考 博客: ...
- MySQL事物原理及事务隔离级别
mysql事物 事务是访问数据库的一个操作序列,数据库应用系统通过事务集来完成对数据库的存取.事务的正确执行使得数据库从一种状态转换为另一种状态. 事务必须服从ISO/IEC所制定的ACID原则.AC ...
- 【C#】根据开始时间和结束时间筛选存在的信息
背景 业务需求中,需要根绝开始时间和结束时间筛选一段时间内的任务存在个数. 示例图片 根据开始时间 9:00到 结束时间11:00 筛选信息 总共有这么四种情况可能出现 插入测试数据 CREATE T ...
- WYT的刷子
WYT的刷子 题目描述 WYT有一把巨大的刷子,刷子的宽度为M米,现在WYT要使用这把大刷子去粉刷有N列的栅栏(每列宽度都为1米:每列的高度单位也为米,由输入数据给出). 使用刷子的规则是: 与地面垂 ...