AC代码

A. Rainbow Dash, Fluttershy and Chess Coloring

可以推导出\(f_1 = 1, f_2 = 2, ..., f_n = f_{n - 2} + 1\)。

然后就可以推出\(ans = \lfloor \frac{n + 2}{2} \rfloor\)。

B. Applejack and Storages

记录\(x\)出现的次数,以及分别记录出现次数大于等于\(2, 4, 6, 8\)的\(x\)的个数,以此记为\(ge2, ge4, ge6, ge8\)。

当且仅当\(ge8 \ge 1\),或者\(ge6 \ge 1 \text{ and } ge2 \ge 2\),或者\(ge4 \ge 2\),或者\(ge4 \ge 1 \text{ and } ge2 \ge 3\)时,答案为YES。

C. Pinkie Pie Eats Patty-cakes

贪心的将出现次数最多的数字尽可能地分散即可。

D. Rarity and New Dress

这题可以用dp做。

首先,通过观察可以得到一个格子对答案的贡献等于以这个格子为中心的最大目标图形的半径长度。但是获取这个半径是很难的。

不过,一个目标图形可以由4个以这个格子为顶点的等腰直角三角形拼接得到,并且4个最大直角边长度中的最小值就是当前格子对答案的贡献。用dp可以很容易的维护一个方向上的最大直角边长度。

所以,只需要用4次dp来获取4个方向上的最大直角边边长,最后再取4个中的最小值,得到的值就是一个格子对答案的贡献。

所有格子贡献之和即为答案。

E1. Twilight and Ancient Scroll (easier version)

题目都看不懂,提前溜了。

Codeforces1393 题解(A-D)的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. java交换两个参数值的四种方法

    第一种:添加中间变量,算是最经典最简易的一种了. //添加一个中间变量 int x = 1, y = 2; int z; z = x;x = y;y = z; System.out.println(x ...

  2. Chrome太占内存?试试这个

    " The Great Suspender" 是一个免费的开源 Google Chrome 扩展程序,适用于那些发现chrome占用过多系统资源或经常遭受chrome崩溃的人. 一 ...

  3. akka-typed(9) - 业务分片、整合,谈谈lagom, 需要吗?

    在讨论lagom之前,先从遇到的需求开始介绍:现代企业的it系统变得越来越多元化.复杂化了.线上.线下各种系统必须用某种方式集成在一起.从各种it系统的基本共性分析:最明显的特征应该是后台数据库的角色 ...

  4. C#算法设计排序篇之04-选择排序(附带动画演示程序)

    选择排序(Selection Sort) 该文章的最新版本已迁移至个人博客[比特飞],单击链接 https://www.byteflying.com/archives/681 访问. 选择排序是一种简 ...

  5. 【数论】莫比乌斯反演Mobius inversion

    本文同步发布于作业部落,若想体验更佳,请点此查看原文.//博客园就是渣,连最基本的符号都打不出来.

  6. Windows 右键 照片查看器 不见了--解决办法

    桌面新建 一个文本文档,将下边复制进去,另存为命名例如为:1.reg 双击运行1.reg,点‘是’,点确认即可. Windows Registry Editor Version 5.00 ; Chan ...

  7. 通过C#实现OPC-UA服务端(二)

    前言 通过我前面的一篇文件,我们已经能够搭建一个OPC-UA服务端了,并且也拥有了一些基础功能.这一次咱们就来了解一下OPC-UA的服务注册与发现,如果对服务注册与发现这个概念不理解的朋友,可以先百度 ...

  8. Dubbo系列之 (四)服务订阅(1)

    辅助链接 Dubbo系列之 (一)SPI扩展 Dubbo系列之 (二)Registry注册中心-注册(1) Dubbo系列之 (三)Registry注册中心-注册(2) Dubbo系列之 (四)服务订 ...

  9. JAVA 下载单个文件

    public void toDownLoad(String ape505, HttpServletRequest request, HttpServletResponse response) thro ...

  10. PythonCrashCourse 第六章习题

    使用一个字典来存储一个熟人的信息,包括名.姓.年龄和居住的城市.该字典应包含键first_name .last_name .age 和city .将存储在该字典中 的每项信息都打印出来 person ...