[PyTorch 学习笔记] 5.2 Hook 函数与 CAM 算法
本章代码:
这篇文章主要介绍了如何使用 Hook 函数提取网络中的特征图进行可视化,和 CAM(class activation map, 类激活图)
Hook 函数概念
Hook 函数是在不改变主体的情况下,实现额外功能。由于 PyTorch 是基于动态图实现的,因此在一次迭代运算结束后,一些中间变量如非叶子节点的梯度和特征图,会被释放掉。在这种情况下想要提取和记录这些中间变量,就需要使用 Hook 函数。
PyTorch 提供了 4 种 Hook 函数。
torch.Tensor.register_hook(hook)
功能:注册一个反向传播 hook 函数,仅输入一个参数,为张量的梯度。
hook
函数:
hook(grad)
参数:
- grad:张量的梯度
代码如下:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
# 保存梯度的 list
a_grad = list()
# 定义 hook 函数,把梯度添加到 list 中
def grad_hook(grad):
a_grad.append(grad)
# 一个张量注册 hook 函数
handle = a.register_hook(grad_hook)
y.backward()
# 查看梯度
print("gradient:", w.grad, x.grad, a.grad, b.grad, y.grad)
# 查看在 hook 函数里 list 记录的梯度
print("a_grad[0]: ", a_grad[0])
handle.remove()
结果如下:
gradient: tensor([5.]) tensor([2.]) None None None
a_grad[0]: tensor([2.])
在反向传播结束后,非叶子节点张量的梯度被清空了。而通过hook
函数记录的梯度仍然可以查看。
hook
函数里面可以修改梯度的值,无需返回也可以作为新的梯度赋值给原来的梯度。代码如下:
w = torch.tensor([1.], requires_grad=True)
x = torch.tensor([2.], requires_grad=True)
a = torch.add(w, x)
b = torch.add(w, 1)
y = torch.mul(a, b)
a_grad = list()
def grad_hook(grad):
grad *= 2
return grad*3
handle = w.register_hook(grad_hook)
y.backward()
# 查看梯度
print("w.grad: ", w.grad)
handle.remove()
结果是:
w.grad: tensor([30.])
torch.nn.Module.register_forward_hook(hook)
功能:注册 module 的前向传播hook
函数,可用于获取中间的 feature map。
hook
函数:
hook(module, input, output)
参数:
- module:当前网络层
- input:当前网络层输入数据
- output:当前网络层输出数据
下面代码执行的功能是 $3 \times 3$ 的卷积和 $2 \times 2$ 的池化。我们使用register_forward_hook()
记录中间卷积层输入和输出的 feature map。
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 2, 3)
self.pool1 = nn.MaxPool2d(2, 2)
def forward(self, x):
x = self.conv1(x)
x = self.pool1(x)
return x
def forward_hook(module, data_input, data_output):
fmap_block.append(data_output)
input_block.append(data_input)
# 初始化网络
net = Net()
net.conv1.weight[0].detach().fill_(1)
net.conv1.weight[1].detach().fill_(2)
net.conv1.bias.data.detach().zero_()
# 注册hook
fmap_block = list()
input_block = list()
net.conv1.register_forward_hook(forward_hook)
# inference
fake_img = torch.ones((1, 1, 4, 4)) # batch size * channel * H * W
output = net(fake_img)
# 观察
print("output shape: {}\noutput value: {}\n".format(output.shape, output))
print("feature maps shape: {}\noutput value: {}\n".format(fmap_block[0].shape, fmap_block[0]))
print("input shape: {}\ninput value: {}".format(input_block[0][0].shape, input_block[0]))
输出如下:
output shape: torch.Size([1, 2, 1, 1])
output value: tensor([[[[ 9.]],
[[18.]]]], grad_fn=<MaxPool2DWithIndicesBackward>)
feature maps shape: torch.Size([1, 2, 2, 2])
output value: tensor([[[[ 9., 9.],
[ 9., 9.]],
[[18., 18.],
[18., 18.]]]], grad_fn=<ThnnConv2DBackward>)
input shape: torch.Size([1, 1, 4, 4])
input value: (tensor([[[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]]),)
torch.Tensor.register_forward_pre_hook()
功能:注册 module 的前向传播前的hook
函数,可用于获取输入数据。
hook
函数:
hook(module, input)
参数:
- module:当前网络层
- input:当前网络层输入数据
torch.Tensor.register_backward_hook()
功能:注册 module 的反向传播的hook
函数,可用于获取梯度。
hook
函数:
hook(module, grad_input, grad_output)
参数:
- module:当前网络层
- input:当前网络层输入的梯度数据
- output:当前网络层输出的梯度数据
代码如下:
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 2, 3)
self.pool1 = nn.MaxPool2d(2, 2)
def forward(self, x):
x = self.conv1(x)
x = self.pool1(x)
return x
def forward_hook(module, data_input, data_output):
fmap_block.append(data_output)
input_block.append(data_input)
def forward_pre_hook(module, data_input):
print("forward_pre_hook input:{}".format(data_input))
def backward_hook(module, grad_input, grad_output):
print("backward hook input:{}".format(grad_input))
print("backward hook output:{}".format(grad_output))
# 初始化网络
net = Net()
net.conv1.weight[0].detach().fill_(1)
net.conv1.weight[1].detach().fill_(2)
net.conv1.bias.data.detach().zero_()
# 注册hook
fmap_block = list()
input_block = list()
net.conv1.register_forward_hook(forward_hook)
net.conv1.register_forward_pre_hook(forward_pre_hook)
net.conv1.register_backward_hook(backward_hook)
# inference
fake_img = torch.ones((1, 1, 4, 4)) # batch size * channel * H * W
output = net(fake_img)
loss_fnc = nn.L1Loss()
target = torch.randn_like(output)
loss = loss_fnc(target, output)
loss.backward()
输出如下:
forward_pre_hook input:(tensor([[[[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]]]]),)
backward hook input:(None, tensor([[[[0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000]]],
[[[0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000],
[0.5000, 0.5000, 0.5000]]]]), tensor([0.5000, 0.5000]))
backward hook output:(tensor([[[[0.5000, 0.0000],
[0.0000, 0.0000]],
[[0.5000, 0.0000],
[0.0000, 0.0000]]]]),)
hook
函数实现机制
hook
函数实现的原理是在module
的__call()__
函数进行拦截,__call()__
函数可以分为 4 个部分:
- 第 1 部分是实现 _forward_pre_hooks
- 第 2 部分是实现 forward 前向传播
- 第 3 部分是实现 _forward_hooks
- 第 4 部分是实现 _backward_hooks
由于卷积层也是一个module
,因此可以记录_forward_hooks
。
def __call__(self, *input, **kwargs):
# 第 1 部分是实现 _forward_pre_hooks
for hook in self._forward_pre_hooks.values():
result = hook(self, input)
if result is not None:
if not isinstance(result, tuple):
result = (result,)
input = result
# 第 2 部分是实现 forward 前向传播
if torch._C._get_tracing_state():
result = self._slow_forward(*input, **kwargs)
else:
result = self.forward(*input, **kwargs)
# 第 3 部分是实现 _forward_hooks
for hook in self._forward_hooks.values():
hook_result = hook(self, input, result)
if hook_result is not None:
result = hook_result
# 第 4 部分是实现 _backward_hooks
if len(self._backward_hooks) > 0:
var = result
while not isinstance(var, torch.Tensor):
if isinstance(var, dict):
var = next((v for v in var.values() if isinstance(v, torch.Tensor)))
else:
var = var[0]
grad_fn = var.grad_fn
if grad_fn is not None:
for hook in self._backward_hooks.values():
wrapper = functools.partial(hook, self)
functools.update_wrapper(wrapper, hook)
grad_fn.register_hook(wrapper)
return result
Hook 函数提取网络的特征图
下面通过hook
函数获取 AlexNet 每个卷积层的所有卷积核参数,以形状作为 key,value 对应该层多个卷积核的 list。然后取出每层的第一个卷积核,形状是 [1, in_channle, h, w],转换为 [in_channle, 1, h, w],使用 TensorBoard 进行可视化,代码如下:
writer = SummaryWriter(comment='test_your_comment', filename_suffix="_test_your_filename_suffix")
# 数据
path_img = "imgs/lena.png" # your path to image
normMean = [0.49139968, 0.48215827, 0.44653124]
normStd = [0.24703233, 0.24348505, 0.26158768]
norm_transform = transforms.Normalize(normMean, normStd)
img_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
norm_transform
])
img_pil = Image.open(path_img).convert('RGB')
if img_transforms is not None:
img_tensor = img_transforms(img_pil)
img_tensor.unsqueeze_(0) # chw --> bchw
# 模型
alexnet = models.alexnet(pretrained=True)
# 注册hook
fmap_dict = dict()
for name, sub_module in alexnet.named_modules():
if isinstance(sub_module, nn.Conv2d):
key_name = str(sub_module.weight.shape)
fmap_dict.setdefault(key_name, list())
# 由于AlexNet 使用 nn.Sequantial 包装,所以 name 的形式是:features.0 features.1
n1, n2 = name.split(".")
def hook_func(m, i, o):
key_name = str(m.weight.shape)
fmap_dict[key_name].append(o)
alexnet._modules[n1]._modules[n2].register_forward_hook(hook_func)
# forward
output = alexnet(img_tensor)
# add image
for layer_name, fmap_list in fmap_dict.items():
fmap = fmap_list[0]# 取出第一个卷积核的参数
fmap.transpose_(0, 1) # 把 BCHW 转换为 CBHW
nrow = int(np.sqrt(fmap.shape[0]))
fmap_grid = vutils.make_grid(fmap, normalize=True, scale_each=True, nrow=nrow)
writer.add_image('feature map in {}'.format(layer_name), fmap_grid, global_step=322)
使用 TensorBoard 进行可视化如下:
CAM(class activation map, 类激活图)
暂未完成。列出两个参考文章。
参考资料
如果你觉得这篇文章对你有帮助,不妨点个赞,让我有更多动力写出好文章。
[PyTorch 学习笔记] 5.2 Hook 函数与 CAM 算法的更多相关文章
- Hadoop源码学习笔记(2) ——进入main函数打印包信息
Hadoop源码学习笔记(2) ——进入main函数打印包信息 找到了main函数,也建立了快速启动的方法,然后我们就进去看一看. 进入NameNode和DataNode的主函数后,发现形式差不多: ...
- JavaScript学习笔记(七)——函数的定义与调用
在学习廖雪峰前辈的JavaScript教程中,遇到了一些需要注意的点,因此作为学习笔记列出来,提醒自己注意! 如果大家有需要,欢迎访问前辈的博客https://www.liaoxuefeng.com/ ...
- Python学习笔记014——迭代工具函数 内置函数enumerate()
1 描述 enumerate() 函数用于将一个可遍历的数据对象(如列表.元组或字符串)组合为一个索引序列,同时列出数据和数据下标,一般用在 for 循环当中. 2 语法 enumerate(sequ ...
- C语言学习笔记---好用的函数memcpy与memset
这个主要用于我个人的学习笔记,便于以后查询,顺便分享给大家. 想必在用C的时候难免会与数组,指针,内存这几样东西打交道,先以数组为例,例如有一个数组int a[5] = {1, 2, 3, 4, 5} ...
- C++学习笔记之——内联函数,引用
本文为原创作品,转载请注明出处 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing/ 作者:晨凫 ...
- 大一C语言学习笔记(5)---函数篇-定义函数需要了解注意的地方;定义函数的易错点;详细说明函数的每个组合部分的功能及注意事项
博主学习C语言是通过B站上的<郝斌C语言自学教程>,对于C语言初学者来说,我认为郝斌真的是在全网C语言学习课程中讲的最全面,到位的一个,这个不是真不是博主我吹他哈,大家可以去B站去看看,C ...
- 学习笔记之——C语言 函数
采用函数的原因: 随着程序规模的变大,产生了以下问题: --main函数变得相当冗杂 --程序复杂度不断提高 --代码前后关联度提高,修改代码往往牵一发而动全身 --变量使用过多,命名都成了问题 -- ...
- OpenCV 学习笔记 04 深度估计与分割——GrabCut算法与分水岭算法
1 使用普通摄像头进行深度估计 1.1 深度估计原理 这里会用到几何学中的极几何(Epipolar Geometry),它属于立体视觉(stereo vision)几何学,立体视觉是计算机视觉的一个分 ...
- [转]Python3《机器学习实战》学习笔记(一):k-近邻算法(史诗级干货长文)
转自http://blog.csdn.net/c406495762/article/details/75172850 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[-] 一 简 ...
随机推荐
- Android html5和Android之间的交互
今天补充了会昨天的问题,然后搞半天又出现莫名其妙的问题. 今天讲的是交互,先说html5在Android的调用. 上面的hello world上面的部分都是安卓里的布局 然后按这些布局自动生成代码. ...
- 初步理解@Transactional注解
在SSM项目中,经常在业务层的类或者方法上看到@Transactional注解,只是知道这个注解的作用是进行事务管理,但是具体有哪些属性,在什么情况下进行回滚,确是不那么清楚.所以在网上看了一些视频和 ...
- Layui+MVC+EF (项目从新创建开始)
最近学习Layui ,就准备通过Layui来实现之前练习的项目, 先创建一个新的Web 空项目,选MVC 新建项目 创建各种类库,模块之间添加引用,并安装必要Nuget包(EF包) 模块名称 模块 ...
- .NET和.NET Core Web APi FormData多文件上传对比
前言 最近因维护.NET和.NET Core项目用到文件上传功能,虽说也做过,但是没做过什么对比,借此将二者利用Ajax通过FormData上传文件做一个总结,通过视图提交表单太简单,这里不做阐述,希 ...
- webMvcConfigurer的详情
摘要 Spring的WebMvcConfigurer接口提供了很多方法让我们来定制SpringMVC的配置.而且Spring还提供了WebMvcConfigurerAdap ...
- Go语言入门系列(五)之指针和结构体的使用
Go语言入门系列前面的文章: Go语言入门系列(二)之基础语法总结 Go语言入门系列(三)之数组和切片 Go语言入门系列(四)之map的使用 1. 指针 如果你使用过C或C++,那你肯定对指针这个概念 ...
- ZooKeeper Watcher 机制
前言 在 ZooKeeper 中,客户端可以向服务端注册一个监听器,监听某个节点或者其子节点列表,当监听对象发生变化时,服务端就会向指定的客户端发送通知,这是 ZooKeeper 中的 Watcher ...
- 2020-07-26:如何用 socket 编程实现 ftp 协议?
福哥答案2020-07-26: 功能用户输入user username.pass password注册,注册后输入dir查看服务器文件列表,输入get filename path下载文件到指定路径. ...
- JavaScript基础-02
1. 六种数据类型: string字符串:number数值:boolean布尔值:null空值:undefined 未定义:object对象 基本数据类型(值类型): string字符串:number ...
- 关于haar特征的理解及使用(java实现)
Haar特征原理综述Haar特征是一种反映图像的灰度变化的,像素分模块求差值的一种特征.它分为三类:边缘特征.线性特征.中心特征和对角线特征.如下所示: Haar-like矩形特征拓展 Lienha ...