题面:

传送门

B. Teamwork

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes
 
For his favorite holiday, Farmer John wants to send presents to his friends. Since he isn’t very good at wrapping presents, he wants to enlist the help of his cows. As you might expect, cows are not much better at wrapping presents themselves, a lesson Farmer John is about to learn the hard way. Farmer John’s N cows (1 ≤ N ≤ 10^4) are all standing in a row, conveniently numbered 1...N in order. Cow i has skill level si at wrapping presents. These skill levels might vary quite a bit, so FJ decides to combine his cows into teams. A team can consist of any consecutive set of up to K cows (1 ≤ K ≤ 10^3), and no cow can be part of more than one team. Since cows learn from each-other, the skill level of each cow on a team can be replaced by the skill level of the most-skilled cow on that team. Please help FJ determine the highest possible sum of skill levels he can achieve by optimally forming teams.
 
Input
The first line of input contains N and K. The next N lines contain the skill levels of the N cows in the order in which they are standing. Each skill level is a positive integer at most 105.
 
Output
Please print the highest possible sum of skill levels FJ can achieve by grouping appropriate consecutive sets of cows into teams.
 
Example
Input
7 3
1
15
7
9
2
5
10
Output
84
 
Note
In this example, the optimal solution is to group the first three cows and the last three cows, leaving the middle cow on a team by itself (remember that it is fine to have teams of size less than K). This effectively boosts the skill levels of the 7 cows to 15, 15, 15, 9, 10, 10, 10, which sums to 84.
 

题目描述:

有n头奶牛,我们可以让连续的奶牛组成一队,组队后队里所有奶牛的等级就会变成队里等级最高的那个,求n头奶牛经过组队后,所有奶牛的等级之和最大的是多少。一队奶牛的数量最多不超过C头牛。
 

题目分析:

这道题可以用动态规划解决:我们先重新定义这个问题:求前n头牛的等级之和最大值是多少?再看看这个问题的子问题:前i头牛的等级之和最大值是多少?(1 <= i <= n)会想到如何联系子问题和我们要求的题目问的问题,其实就是:我已经知道前i头牛的等级之和最大值是多少,然后通过这个计算出前n头牛的等级之和最大值是多少。然后,我们可以定义一个dp[i]数组来记录前i头牛的等级之和最大值,来通过利用dp[i]的值算出dp[n]。
 
我们具体看看样例怎样算:首先,我们已经知道dp[i](1 <= i <= 6)的值,求dp[7]。我们对最后一头牛,也就是第7头牛进行分类讨论:
 
1.第7头奶牛自己组成一队,那么,dp[7] = dp[6] + 10
 
 
2.第7头奶牛和前面的一头奶牛组成一队,那么,dp[7] = dp[5] + 10 * 2
 
 
3.第7头奶牛和前面的两头奶牛组成一队,那么,dp[7] = dp[4] + 10 * 3

然后选出最大的那种情况就可以了。
那么,dp[4], dp[5], dp[6]怎么求?我们可以用求dp[7]的方法同样求出这三个的值。
状态转移方程:dp[i] = max{ dp[i-j] + j * max level[k] ( i-j+1 <= k <= i ) }   
 
 
AC代码:
 
 1 #include <cstdio>
2 #include <cstring>
3 #include <iostream>
4 #include <cmath>
5 #include <algorithm>
6 using namespace std;
7 const int maxn = 1e4+5;
8 const int maxk = 1e3+5;
9 int n, k;
10 int a[maxn];
11 int dp[maxn];
12
13 void test(){
14 cout << endl;
15 for(int i = 1; i <= n; i++){
16 printf("dp[%d] = %d\n", i, dp[i]);
17 }
18 }
19
20 int main(){
21 scanf("%d%d", &n, &k);
22 for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
23
24
25 for(int i = 1; i <= n; i++){
26 int pre_max = 0;
27 for(int j = 1; j <= k; j++){
28 if(i >= j){
29 if(a[i-j+1] > pre_max) pre_max = a[i-j+1];
30 dp[i] = max(dp[i], dp[i-j]+pre_max*j);
31 }
32 }
33 }
34
35 //test();
36 printf("%d\n", dp[n]);
37 return 0;
38 }
 
 

2019 GDUT Rating Contest I : Problem B. Teamwork的更多相关文章

  1. 2019 GDUT Rating Contest II : Problem F. Teleportation

    题面: Problem F. Teleportation Input file: standard input Output file: standard output Time limit: 15 se ...

  2. 2019 GDUT Rating Contest III : Problem D. Lemonade Line

    题面: D. Lemonade Line Input file: standard input Output file: standard output Time limit: 1 second Memo ...

  3. 2019 GDUT Rating Contest I : Problem H. Mixing Milk

    题面: H. Mixing Milk Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  4. 2019 GDUT Rating Contest I : Problem A. The Bucket List

    题面: A. The Bucket List Input file: standard input Output file: standard output Time limit: 1 second Me ...

  5. 2019 GDUT Rating Contest I : Problem G. Back and Forth

    题面: G. Back and Forth Input file: standard input Output file: standard output Time limit: 1 second Mem ...

  6. 2019 GDUT Rating Contest III : Problem E. Family Tree

    题面: E. Family Tree Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  7. 2019 GDUT Rating Contest III : Problem C. Team Tic Tac Toe

    题面: C. Team Tic Tac Toe Input file: standard input Output file: standard output Time limit: 1 second M ...

  8. 2019 GDUT Rating Contest III : Problem A. Out of Sorts

    题面: 传送门 A. Out of Sorts Input file: standard input Output file: standard output Time limit: 1 second M ...

  9. 2019 GDUT Rating Contest II : Problem G. Snow Boots

    题面: G. Snow Boots Input file: standard input Output file: standard output Time limit: 1 second Memory ...

随机推荐

  1. Gym 101464C - 计算几何+二分(uva1463)

    不是很难,但是我觉得对代码能力的要求还是挺高的. 注意模块化. 因为是浮点数,所以二分用的很多很多. 参考 https://blog.csdn.net/njupt_lyy/article/detail ...

  2. meidi

    最近觉得某些公司的选择题也是很基础,非常值得总结回味.今天做了美的的笔试,20道选择题(单选14+6多选).特此记录如下(部分忘了烦请见谅): 1. 是我昨晚刚刚总结的List,Set,Map的区别: ...

  3. mssql数据库提权(xp_cmdshell)

    1.关于 "xp_cmdshell" "存储过程":其实质就是一个"集合",那么是什么样的结合呢,就是存储在SqlServer中预先定义好的 ...

  4. 使用nodejs爬取图片

    在运行代码前,请确保本机是否有nodejs环境 1 D:\ > node -v 2 v12.1.0 //版本号 需要用到的包 axios //请求页面 cheerio // 把get请求的页面 ...

  5. Cortex-M系列内核 启动文件分析

    最近终于闲了下来了准备好好学习下Cortex-M3/M4系列处理器的架构,经过各种资料的折磨也没法对它的整个工作过程能有个完整的认知,最后看到一片博客打算从程序的运行过程开始探究,所以首先就找到了启动 ...

  6. JxBrowser: 6.6.1 Crack

    JxBrowser: 6.6.1. 1. RELEASE NOTES Download:HomePage JxBrowser is a cross-platform library that prov ...

  7. /usr/lib/nvidia-384/libEGL.so.1 is not a symbolic link

    记得要将384改为自己系统对应的a. sudo mv /usr/lib/nvidia-384/libEGL.so.1 /usr/lib/nvidia-384/libEGL.so.1.org sudo ...

  8. Apple Watch Series 6 编织表带如何清洗

    Apple Watch Series 6 编织表带如何清洗 如何清洁 Apple Watch https://support.apple.com/zh-cn/HT204522 refs xgqfrms ...

  9. vue component :is

    vue component :is Vue <component> element https://vuejs.org/v2/guide/components.html#Dynamic-C ...

  10. html5 & iOS

    html5 & iOS Apple App Store审核指南 https://developer.apple.com/app-store/review/guidelines/ Apple审核 ...