题面:

传送门

B. Teamwork

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 256 megabytes
 
For his favorite holiday, Farmer John wants to send presents to his friends. Since he isn’t very good at wrapping presents, he wants to enlist the help of his cows. As you might expect, cows are not much better at wrapping presents themselves, a lesson Farmer John is about to learn the hard way. Farmer John’s N cows (1 ≤ N ≤ 10^4) are all standing in a row, conveniently numbered 1...N in order. Cow i has skill level si at wrapping presents. These skill levels might vary quite a bit, so FJ decides to combine his cows into teams. A team can consist of any consecutive set of up to K cows (1 ≤ K ≤ 10^3), and no cow can be part of more than one team. Since cows learn from each-other, the skill level of each cow on a team can be replaced by the skill level of the most-skilled cow on that team. Please help FJ determine the highest possible sum of skill levels he can achieve by optimally forming teams.
 
Input
The first line of input contains N and K. The next N lines contain the skill levels of the N cows in the order in which they are standing. Each skill level is a positive integer at most 105.
 
Output
Please print the highest possible sum of skill levels FJ can achieve by grouping appropriate consecutive sets of cows into teams.
 
Example
Input
7 3
1
15
7
9
2
5
10
Output
84
 
Note
In this example, the optimal solution is to group the first three cows and the last three cows, leaving the middle cow on a team by itself (remember that it is fine to have teams of size less than K). This effectively boosts the skill levels of the 7 cows to 15, 15, 15, 9, 10, 10, 10, which sums to 84.
 

题目描述:

有n头奶牛,我们可以让连续的奶牛组成一队,组队后队里所有奶牛的等级就会变成队里等级最高的那个,求n头奶牛经过组队后,所有奶牛的等级之和最大的是多少。一队奶牛的数量最多不超过C头牛。
 

题目分析:

这道题可以用动态规划解决:我们先重新定义这个问题:求前n头牛的等级之和最大值是多少?再看看这个问题的子问题:前i头牛的等级之和最大值是多少?(1 <= i <= n)会想到如何联系子问题和我们要求的题目问的问题,其实就是:我已经知道前i头牛的等级之和最大值是多少,然后通过这个计算出前n头牛的等级之和最大值是多少。然后,我们可以定义一个dp[i]数组来记录前i头牛的等级之和最大值,来通过利用dp[i]的值算出dp[n]。
 
我们具体看看样例怎样算:首先,我们已经知道dp[i](1 <= i <= 6)的值,求dp[7]。我们对最后一头牛,也就是第7头牛进行分类讨论:
 
1.第7头奶牛自己组成一队,那么,dp[7] = dp[6] + 10
 
 
2.第7头奶牛和前面的一头奶牛组成一队,那么,dp[7] = dp[5] + 10 * 2
 
 
3.第7头奶牛和前面的两头奶牛组成一队,那么,dp[7] = dp[4] + 10 * 3

然后选出最大的那种情况就可以了。
那么,dp[4], dp[5], dp[6]怎么求?我们可以用求dp[7]的方法同样求出这三个的值。
状态转移方程:dp[i] = max{ dp[i-j] + j * max level[k] ( i-j+1 <= k <= i ) }   
 
 
AC代码:
 
 1 #include <cstdio>
2 #include <cstring>
3 #include <iostream>
4 #include <cmath>
5 #include <algorithm>
6 using namespace std;
7 const int maxn = 1e4+5;
8 const int maxk = 1e3+5;
9 int n, k;
10 int a[maxn];
11 int dp[maxn];
12
13 void test(){
14 cout << endl;
15 for(int i = 1; i <= n; i++){
16 printf("dp[%d] = %d\n", i, dp[i]);
17 }
18 }
19
20 int main(){
21 scanf("%d%d", &n, &k);
22 for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
23
24
25 for(int i = 1; i <= n; i++){
26 int pre_max = 0;
27 for(int j = 1; j <= k; j++){
28 if(i >= j){
29 if(a[i-j+1] > pre_max) pre_max = a[i-j+1];
30 dp[i] = max(dp[i], dp[i-j]+pre_max*j);
31 }
32 }
33 }
34
35 //test();
36 printf("%d\n", dp[n]);
37 return 0;
38 }
 
 

2019 GDUT Rating Contest I : Problem B. Teamwork的更多相关文章

  1. 2019 GDUT Rating Contest II : Problem F. Teleportation

    题面: Problem F. Teleportation Input file: standard input Output file: standard output Time limit: 15 se ...

  2. 2019 GDUT Rating Contest III : Problem D. Lemonade Line

    题面: D. Lemonade Line Input file: standard input Output file: standard output Time limit: 1 second Memo ...

  3. 2019 GDUT Rating Contest I : Problem H. Mixing Milk

    题面: H. Mixing Milk Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  4. 2019 GDUT Rating Contest I : Problem A. The Bucket List

    题面: A. The Bucket List Input file: standard input Output file: standard output Time limit: 1 second Me ...

  5. 2019 GDUT Rating Contest I : Problem G. Back and Forth

    题面: G. Back and Forth Input file: standard input Output file: standard output Time limit: 1 second Mem ...

  6. 2019 GDUT Rating Contest III : Problem E. Family Tree

    题面: E. Family Tree Input file: standard input Output file: standard output Time limit: 1 second Memory ...

  7. 2019 GDUT Rating Contest III : Problem C. Team Tic Tac Toe

    题面: C. Team Tic Tac Toe Input file: standard input Output file: standard output Time limit: 1 second M ...

  8. 2019 GDUT Rating Contest III : Problem A. Out of Sorts

    题面: 传送门 A. Out of Sorts Input file: standard input Output file: standard output Time limit: 1 second M ...

  9. 2019 GDUT Rating Contest II : Problem G. Snow Boots

    题面: G. Snow Boots Input file: standard input Output file: standard output Time limit: 1 second Memory ...

随机推荐

  1. MySQL数据库系列(三)- MySQL常用引擎MyISAM和InnoDB区别详解

    概述 InnoDB:在MySQL 5.5及之后的版本,InnoDB是MySQL默认的事务型引擎,也是最重要和使用最广泛的存储引擎.它被设计成为大量的短期事务,短期事务大部分情况下是正常提交的,很少被回 ...

  2. python argparse (更新中)

    action='store_true' 例如 parser.add_argument("--generate_text_embedding", action='store_true ...

  3. Leetcode(337)-打家劫舍III

    小偷又发现一个新的可行窃的地点. 这个地区只有一个入口,称为"根". 除了根部之外,每栋房子有且只有一个父房子. 一番侦察之后,聪明的小偷意识到"这个地方的所有房屋形成了 ...

  4. Linux的进程权限控制

    Linux系统的安全性得益于其进程权限和文件权限的控制机制.今天抽空梳理下Linux下的进程权限控制相关的文件权限涉及一点.首先明确四个名词:真实用户ID(real ID).有效用户ID(effect ...

  5. 使用opencv-python实现MATLAB的fspecial('Gaussian', [r, c], sigma)

    reference_opencv实现高斯核 reference_MATLAB_fspecial函数说明 # MATLAB H = fspecial('Gaussian', [r, c], sigma) ...

  6. favicon.ico All In One

    favicon.ico All In One link rel="icon" type="image/x-icon" href="http://exa ...

  7. 免费在线 Linux Desktop 环境

    免费在线 Linux Desktop 环境 Run Linux OS Distributions online https://www.onworks.net/os-distributions 免费测 ...

  8. GitHub Actions in Action

    GitHub Actions in Action https://lab.github.com/githubtraining/github-actions:-hello-world https://g ...

  9. React Hooks: useImperativeHandle All In One

    React Hooks: useImperativeHandle All In One useImperativeHandle https://reactjs.org/docs/hooks-refer ...

  10. Spyder & Kite

    Spyder & Kite Spyder The Scientific Python Development Environment / IDE https://www.spyder-ide. ...