[Fundamental of Power Electronics]-PART II-9. 控制器设计-9.3 关键项1/(1+T)和T/(1+T)以及闭环传递函数的构建
9.3 关键项\(1/(1+T)\)和\(T/(1+T)\)以及闭环传递函数的构建
从式(9.4)到(9.9)的传递函数可以很容易的由图形代数方法进行构建。假设我们已经分析了反馈系统模块,并且已经画出了\(||T(s)||\)的bode图。举一个具体的例子,假设结果为图9.5所示,其中\(T(s)\)为:
\]
这个例子看起来有一点复杂,但实际的稳压器的环路增益通常甚至更加复杂,并且可能包含四个,五个甚至更多的极点。分析(9.5)到(9.7),要确定闭环传递函数,需要进行大量工作。环路增益必须要加1,并且重构所得的分子和分母。使用这种方法,很难获得对闭环传递函数和环路增益之间关系的物理本质了解。这样的结果就是,难以设计满足规格的反馈回路。
Fig. 9.5 Magnitude of the loop gain example, Eq. (9.10)
利用图形代数方法,闭环传递函数可以通过观察的方式构建,并且这些传递函数与环路增益的关系也变得显而易见了。让我们首先来研究如何画出\(||T/(1+T)||\)。从图9.5可以看到,存在被称为穿越频率(crossover frequency)的\(f_{c}\),使得\(||T||=1\)。在频率小于\(f_{c}\)时,\(||T||>1\);事实上,对于\(f<<f_{c}\)时,\(||T||>>1\)。因此,在低频处,\((1+T) \approx T\),并且\(T/(1+T) \approx T/T=1\)。在频率大于\(f_{c}\)处,\(||T||<1\),并且当\(f>>f_{c}\)时\(||T||<<1\)。因此,在高频处,\((1+T) \approx 1\)并且\(T/(1+T)\approx T/1=T\)。因此我们得到:
\begin{cases}
1\ for\ ||T||>>1 \\
T\ for\ ||T||<<1
\end{cases} \tag{9.11}
\]
对应于式(9.11)的渐近线相对的就比较容易构建了。当\(f<f_{c}\)时,低频渐近线为1或者0 dB。\(f>f_{c}\)的高频渐近线为T。结果如图9.6所示。
Fig. 9.6 Graphical construction of the asymptotes of \(||T/(1 + T)||\). Exact curves are omitted
因此,在低频段,\(||T||\)比较大,给定-输出传递函数为:
\]
这是一个期望的特性,并且反馈环路在\(||T||\)比较大的频率下都能很好的工作。在高频段(\(f>>f_{c}\)),其中\(||T||\)很小,那么给定-输出传递函数为:
\]
这并不是我们期望的特性,实际上,这是将反馈回路断开的增益(\(H \rightarrow 0\))。在高频段,由于\(T\)的带宽有限,因此反馈回路无法消除干扰。通过将图9.6中的\(T/(1+T)\)的渐近线乘以\(1/H\),就可以在图形上构建出给定-输出传递函数。
因此,穿越频率(crossover frequency)\(f_{c}\)代表了反馈系统的带宽,并且在该带宽内,闭环特性得以改善。进一步地,可以从图9.6中看出反馈使系统\(T\)的极点移动了:\(T\)在\(f_{p1}\)处包含两个极点,但\(T/(1+T)\)中并不存在,而\(T/(1+T)\)在\(f_{c}\)处包含一个极点。可以看出的是,\(T\)的一个极点从频率\(f_{p1}\)大致移动到了\(f_{z}\),这样二者抵消了。\(f_{p1}\)处的第二个极点从移动到了大约\(f_{c}\)处。图9.6表明了如何在反馈环路的带宽内增加极点的频率并改变其\(Q\)系数。
我们可以用同样的方式画出\(||1/(1+T)||\)的渐近线。在低频段,\(||T||>>1\),那么\((1+T) \approx T\),因此\(1/(1+T) \approx 1/T\)。在高频段,\(||T||<<1\),那么\((1+T) \approx 1\)并且\(1/(1+T) \approx 1\)。因此我们有:
\begin{cases}
\cfrac{1}{T(s)}\ for\ ||T||>>1 \\
1\ \ \ \ for\ ||T||<<1
\end{cases} \tag{9.14}
\]
以图9.5中的\(T(s)\)为例的渐近线在图9.7中给出。
Fig. 9.7 Graphical construction of \(||1/(1 + T)||\)
在\(||T||\)很大的低频段,从\(v_{g}\)到\(v\)的扰动传递函数为:
\]
同样的,\(G_{vg}(s)\)是不含反馈的原始传递函数。闭环传递函数幅值减小了系数\(1/||T||\)。因此,例如,如果我们想在120Hz,将传递函数缩小20倍,因此我们需要\(||T||\)在120Hz至少为\(20 \Rightarrow 26\ dB\)。通过将图9.7的渐近线乘以\(G_{vg}(s)\)的渐近线,可以在图形中构建\(v_{g}\)到\(v\)的传递函数。
类似的方法可以用于输出阻抗上。低频下的闭环输出阻抗为:
\]
在小于穿越频率的频率段,输出阻抗的幅值在幅值上也减小系数为\(1/||T||\)。
在高频段\((f>f_{c})\)处,\(||T||\)很小,那么\(1/(1+T) \approx 1\),并且:
& \cfrac{\hat{v}(s)}{\hat{v}_{g}(s)}=\cfrac{G_{vg}(s)}{1+T(s)} \approx G_{vg}(s) \\
& \cfrac{\hat{v}(s)}{-\hat{i}_{load}(s)}=\cfrac{Z_{out}(s)}{1+T(s)} \approx Z_{out}(s)
\end{aligned} \tag{9.17}
\]
这与原始扰动传递函数和输出阻抗相同。因此,在高于穿越频率的频率段,反馈环路对扰动传递函数几乎没有影响。
图9.8a给出了一个具有由下式给出的环路增益\(T(s)\)的buck变换器的实例:
\]
这个简单的示例没有包含补偿器。Buck变换器的LC滤波器在\(f=f_{p1}\)引入了谐振极点,并且电容等效串联电阻\(R_{C}\)在频率\(f_{z}\)处引入了一个极点。反馈传感器模块\(H(s)\)在\(f=f_{p2}\)处包含一个高频极点。因此,这个示例包含的环路增益\(T(s)\)与(9.10)相同。让我们假设我们的元件值选择使得其幅值如图9.5。因此,\(||1/(1+T)||\)在图9.7中给出了。
Fig. 9.8 Construction of the closed-loop output impedance of a simple buck regulator: (a) feedback
system, (b) open-loop (solid line) and closed-loop (dashed line) output impedance asymptotes
我们可以通过在图9.8a中将\(\hat{v}_{g}\)和\(\hat{d}\)设置为0,从而求解输出端口的阻抗,然后求解开环输出阻抗\(Z_{out}\)的bode图,其结果为:
\]
对于\(R_{C}<<R\)的典型情况,开环输出阻抗的近似bode图在图9.8b中进行了构建。接下来,通过将图9.8b所示的开环输出阻抗乘以图9.7所示的\(||1/(1+T)||\)的渐近线来构成闭环输出阻抗。在大于穿越频率\(f_{c}\)的频率段,输出阻抗将不受反馈回路的影响。在刚好低于\(f_{c}\)的频率处,反馈环路减小了输出阻抗,并且\(||1/(1+T)||\)项为\(||Z_{out}/(1+T)||\)引入了\(+20\ dB\)每十倍频程的斜率。在\(f=f_{z}\)处,\(Z_{out}\)的零点被\(1/(1+T)\)的极点对消了,因此,在闭环传递函数中没有观察到斜率的变化。同样的,在\(f=f_{p1}\)处,\(Z_{out}\)的谐振极点被\(1/(1+T)\)的谐振零点对消了。那么对于\(||Z_{out}/(1+T)||\)的斜率来说,仍然没有什么变化。这些对消的发生时因为功率级电路将同样的极点引入了\(G_{vd}(s)\)和\(Z_{out}(s)\)中了。
本章后面将给出另外一个示例,其中反馈的补偿器电路将不存在于\(Z_{out}(s)\)的零极点引入了\(T(s)\)。结果闭环输出阻抗表现了由补偿器动态引入\(||1/(1+T)||\)的零极点特性。
[Fundamental of Power Electronics]-PART II-9. 控制器设计-9.3 关键项1/(1+T)和T/(1+T)以及闭环传递函数的构建的更多相关文章
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.6 环路增益的测量/9.7 本章小结
9.6 环路增益的测量 测量原型反馈系统的环路增益是一个非常好的工程实践.这种实践的目的是验证系统是否被正确地建模.如果是的,那么已经应用了良好控制器设计的系统,其特性将满足相关瞬态过冲(相角裕度), ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.5 控制器的设计
9.5 控制器设计 现在让我们来考虑如何设计控制器系统,来满足有关抑制扰动,瞬态响应以及稳定性的规范或者说设计目标.典型的直流控制器设计可以用以下规范定义: 1.负载电流变化对输出电压调节的影响.当负 ...
- [Fundamental of Power Electronics]-PART I-1.引言-1.1 功率处理概论
1.1 功率处理概论 电力电子领域关注的是利用电子设备对电力进行处理[1–7].如图1.1所示,其中关键部件就是开关变换器.通常,开关变换器包含电源输入和控制输入端口以及电源输出端口.原始输入功率按控 ...
- [Fundamental of Power Electronics]-PART II-7. 交流等效电路建模-7.3 脉冲宽度调制器建模
7.3 脉冲宽度调制器建模 我们现在已经达成了本章开始的目标,为图7.1推导了一个有效的等效电路模型.但仍存在一个细节,对脉冲宽度调制(PWM)环节进行建模.如图7.1所示的脉冲宽度调制器可以产生一个 ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.1 引言
9.1 引言 在所有的开关变换器中,输出电压\(v(t)\)都是输入电压\(v_{g}(t)\),占空比\(d(t)\),负载电流\(i_{load}(t)\)和电路元件值的函数.在DC-DC变换器应 ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.4 稳定性
9.4 稳定性 众所周知的是,增加反馈回路可能会导致原本稳定的系统变得不稳定.尽管原变换器传递函数(式(9.1))以及环路增益\(T(s)\)不包含右半平面极点,但式(9.4)的闭环传递函数仍然可能存 ...
- [Fundamental of Power Electronics]-PART II-9. 控制器设计-9.2 负反馈对网络传递函数的影响
9.2 负反馈对网络传递函数的影响 我们已经知道了如何推导开关变换器的交流小信号传递函数.例如,buck变换器的等效电路模型可以表示为图9.3所示.这个等效电路包含三个独立输入:控制输入变量\(\ha ...
- [Fundamental of Power Electronics]-PART I-1.引言-1.2 1.3 电力电子技术的几个应用、本书内容
1.2 电力电子技术的几个应用 高效开关变换器面临的功率范围从 (1)小于1瓦(电池供电的便携式设备内的DC-DC转换器)到(2)计算机及办公设备中的几十,几百,数千瓦到(3)变速电机驱动器中上千瓦及 ...
- [Fundamental of Power Electronics]-PART I-4.开关实现-4.1 开关应用
4.1 开关应用 4.1.1 单象限开关 理想的SPST(Single pole single throw)开关如图4.1所示.开关包含电源端子1和0,其电流和电压极性如图所示.在接通状态下,电压\( ...
随机推荐
- ES6 & Classes & Interface
ES6 & Classes & Interface what's the difference between javascript Classes & Interface ? ...
- @bind decorator
@bind decorator https://www.npmjs.com/package/bind-decorator https://github.com/NoHomey/bind-decorat ...
- HTTP/3 protocol
HTTP/3 protocol https://caniuse.com/#feat=http3 HTTP/3 H3 https://en.wikipedia.org/wiki/HTTP/3 QUIC ...
- c++指针练习
Pointers 在getchar处断点,断点后,调试->窗口->反汇编 查看数据 main #include <iostream> #include <Windows. ...
- Flutter 真机调试
先把手机开启开发者模式,并打开USB调试功能(每种机型开启方法可能不一样) flutter devices 查看是否连接 flutter run
- 「NGK每日快讯」2021.2.3日NGK公链第92期官方快讯!
- USDN代币多少钱?USDN有什么用?
加密货币走向主流人群的采用有很多障碍,比如监管.交易所黑客事件等,但最明显的障碍还是它们极端的价格波动.这从加密货币的整个历史长度来看都是如此.一个货币要正常运转,比如成为有效的交换媒介.记账单位以及 ...
- python的with用法(转载)
原文地址:https://www.cnblogs.com/wanglei-xiaoshitou1/p/9238275.html 一.with语句是什么? 有一些任务,可能事先需要设置,事后做清理工作. ...
- dategrip的使用技巧
原文链接:https://blog.csdn.net/weixin_44421461/article/details/109541903 数据表复制,可以直接用sql语句 1.复制表结构及数据到新表 ...
- Vue学习笔记-Windows系统Git安装(按装vue-element-admin报错)
一 使用环境: windows 7 64位操作系统 二 Windows系统Git安装(Git是一个开源的分布式版本控制系统,可以有效.高速的处理从很小到非常大的项目版本管理,是目前使用范围最广的版 ...