一、贡献

(1)提出一种针对RGB-D的新的运动分割算法

(2)运动分割采用矢量量化深度图像

(3)数据集测试,并建立RGB-D SLAM系统

二、Related work

[1]R.K. Namdev, A. Kundu, K.M. Krishna, C. Jawahar, Motion segmentation of multiple objects from a freely moving monocular camera, in: Robotics and Automation(ICRA), 2012 IEEE International Conference on, IEEE, 2012, pp. 4092–4099.

利用多几何约束与密集光流分割运动物体,并整合至SLAM系统。

[2]T. Lim, B. Han, J.H. Han, Modeling and segmentation of floating foreground and background in videos, Pattern Recognit. 45 (4) (2012) 1696–1706.

通过检查具有极线约束的密集光流,从图像第一帧获得运动提示,最初的运动分割作为种子向后传播。将一帧图像切割成等大的块,在核密度模型中利用传播的运动分割结果以块为单位学习背景和前景外观。运动分割与传播模型反复迭代得到当前结果。

[3]K. Moo Yi, K. Yun, S. Wan Kim, H. Jin Chang, J. Young Choi, Detection of moving objects with non-stationary cameras in 5.8 ms: Bringing motion detection to your mobile device, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2013, pp. 27–34.

速度快,硬件要求低。采用了块技术,采用双模单高斯模型对每个块进行描述,一个单高斯模型作为显性的模型,另一个作为候选模型。双模单高斯模型提供了两个容器来接收数据,从而避免了前景点污染了真实的背景模型。当一个模型的age大于另一个时,两个模型作交换。使用从单应性计算的自我运动将块与传播混合。

[4]A. Teichman, J.T. Lussier, S. Thrun, Learning to Segment and Track in RGBD, IEEE Trans. Autom. Sci. Engrg. 10 (4) (2013) 841–852.

提出了基于RGB-D数据的运动去除算法,结合大量分割线索来构造条件随机场(CRF)模型,分割线索包括光流,视觉外观,颜色,深度的不连续性等。该方法的训练过程是确定能量函数中每个线索的权重。假设在第一次迭代时给出了初始的手动标记分割。当前帧的CRF分割结果作为下一帧中CRF模型的运动似然。利用传递的方式将运动物体从每一帧里递增式得分割出来。

[5]D. Giordano, F. Murabito, S. Palazzo, C. Spampinato, Superpixel-based video object segmentation using perceptual organization and location prior, in: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June
2015.

运动线索是通过检查超像素在连续帧中变化获得的,作者发现超分像素的改变一般是在运动的物体上,将超分像素从当前帧传播到上一帧。使用上一帧中重叠最大部分的超分像素与传递的超分像素来计算Jaccard距离。采用自适应阈值以通过计算的Jaccard距离确定传播的超像素是否属于移动物体。 使用高斯混合(MOG)技术将超分像素分类以建立前景与背景外观模型。 使用图形切割框架进一步优化运动分割。

[6]Y. Wang, S. Huang, Towards dense moving object segmentation based robust dense RGB-D SLAM in dynamic scenarios, in: Control Automation Robotics & Vision (ICARCV), 2014 13th International Conference on, IEEE, 2014.
pp. 1841–1846.

与本文关联最大。采用了[7]中提出的运动分割方法,并将其集成到RGB-D SLAM系统中,结果是基于TUM数据集。

[7]J. Sturm, N. Engelhard, F. Endres, W. Burgard, D. Cremers, A benchmark for the evaluation of RGB-D SLAM systems, in: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2012, pp. 573–580.

三、方法

1、基于自我运动补偿图像差分粗略地检测运动物体运动。

2、通过使用粒子滤波器跟踪运动来增强运动检测。

3、对矢量量化深度图像应用最大后验(MAP)估计,以精确地确定前景。

应该注意的是,该论文方法中跟踪的是运动补丁但不是移动物体。 我们的方法不同于大多数跟踪技术,它们构建移动对象的模型并跟踪构建的模型。

利用RGB通过RANSAC求出两帧之间H单应矩阵,通过用运动补偿的最后RGB帧减去当前RGB帧来粗略地检测运动对象运动。 不在3D中补偿RGB-D点云帧的原因是当距离增加时,深度测量误差呈二次方增加。

Improving RGB-D SLAM in dynamic environments: A motion removal approach的更多相关文章

  1. 论文阅读:hector_slam: A Flexible and Scalable SLAM System with Full 3D Motion Estimation.

    参考:<A Flexible and Scalable SLAM System with Full 3D Motion Estimation.> 该论文是ROS中hector_mappin ...

  2. Semantic Monocular SLAM for Highly Dynamic Environments面向高动态环境的语义单目SLAM

    一.摘要 当前单目SLAM系统能够实时稳定地在静态环境中运行,但是由于缺乏明显的动态异常处理能力,在动态场景变化与运动中往往会失败.作者为解决高度动态环境中的问题,提出一种语义单目SLAM架构,结合基 ...

  3. 【Hector slam】A Flexible and Scalable SLAM System with Full 3D Motion Estimation

    作者总结了SLAM前端和后端的区别 While SLAM frontends are used to estimate robot movement online in real-time, the ...

  4. 83 项开源视觉 SLAM 方案够你用了吗?

    作者:吴艳敏 来源:83 项开源视觉 SLAM 方案够你用了吗? 前言 1. 本文由知乎作者小吴同学同步发布于https://zhuanlan.zhihu.com/p/115599978/并持续更新. ...

  5. 泡泡一分钟:Semantic Labeling of Indoor Environments from 3D RGB Maps

    张宁 Semantic Labeling of Indoor Environments from 3D RGB Maps Manuel Brucker,  Maximilian Durner,  Ra ...

  6. Improving Network Management with Software Defined Networking

    Name of article:Improving Network Management with  Software Defined Networking Origin of the article ...

  7. 一起做RGB-D SLAM (6)

    第六讲 图优化工具g2o的入门 2016.11 更新 把原文的SIFT替换成了ORB,这样你可以在没有nonfree模块下使用本程序了. OpenCV可以使用 apt-get install libo ...

  8. 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments

    张宁  Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...

  9. BAD SLAM:捆绑束调整直接RGB-D SLAM

    BAD SLAM:捆绑束调整直接RGB-D SLAM BAD SLAM: Bundle Adjusted Direct RGB-D SLAM 论文地址: http://openaccess.thecv ...

随机推荐

  1. webpack正式、测试环境接口地址本地运行及打包命令配置

    声明:本文由w3h5原创,转载请注明出处:<webpack正式.测试环境接口地址本地运行及打包命令配置> https://www.w3h5.com/post/521.html 为了方便开发 ...

  2. CSS学习之选择器优先级与属性继承

    CSS学习之选择器优先级与属性继承 选择器优先级 其实选择器是具有优先级的,我们来看下面这一组案例: <!DOCTYPE html> <html lang="en" ...

  3. djangorestframework学习1-通过HyperlinkedModelSerializer,ModelViewSet,routers编写第一个接口

    前提首先安装了django,安装方式:pip install django 1. djangorestftamework安装: pip install djangorestframework 2. 创 ...

  4. python 并发专题(六):协程相关函数以及实现(gevent)

    文档资源 http://sdiehl.github.io/gevent-tutorial/ 一.协程实现 线程和协程 既然我们上面也说了,协程也被称为微线程,下面对比一下协程和线程: 线程之间需要上下 ...

  5. Python之爬虫(十七) Scrapy框架中Spiders用法

    Spider类定义了如何爬去某个网站,包括爬取的动作以及如何从网页内容中提取结构化的数据,总的来说spider就是定义爬取的动作以及分析某个网页 工作流程分析 以初始的URL初始化Request,并设 ...

  6. HotSpot的对象模型(5)

    Java对象通过Oop来表示.Oop指的是 Ordinary Object Pointer(普通对象指针).在 Java 创建对象实例的时候创建,用于表示对象的实例信息.也就是说,在 Java 应用程 ...

  7. md5加密密码

    using System.Security.Cryptography; public string GetStrMd5(string ConvertString) { MD5CryptoService ...

  8. JavaScript定时器及回调用法

    JavaScript定时器及回调用法 循环定时任务 // 假设现在有这样一个需求:我需要请求一个接口,根据返回结果判断需不需要重复请求,直到达到某一条件为止,停止请求执行某操作 <script ...

  9. Java多线程原理+基础知识(超级超级详细)+(并发与并行)+(进程与线程)1

    Java多线程 我们先来了解两个概念!!!! 1.什么是并发与并行 2.什么是进程与线程 1.什么是并发与并行 1.1并行:两个事情在同一时刻发生 1.2并发:两个事情在同一时间段内发生 并发与并行的 ...

  10. 生态 | Apache Hudi集成Alluxio实践

    原文链接:https://mp.weixin.qq.com/s/sT2-KK23tvPY2oziEH11Kw 1. 什么是Alluxio Alluxio为数据驱动型应用和存储系统构建了桥梁, 将数据从 ...