【SDOI2012】Longge 的问题 题解(欧拉函数)
前言:还算比较简单的数学题,我这种数学蒟蒻也会做QAQ。
---------------
题意:求$\sum\limits_{i=1}^n gcd(i,n)$的值。
设$gcd(i,n)=d$,即$d$为$i$和$n$的因数,那么有$gcd(i/d,n/d)=1$。假设我们求出了$x$个满足条件的$i$,那么总的结果就是$x*d$。我们因此可以枚举$n$的因数,累加即可。注意判断$n$是不是完全平方数。
问题来了:怎么求满足$gcd(i/d,n/d)=1$的$i$的个数?欧拉函数啊!我们可以$\sqrt n$地求出$φ(n/i)$,结果就是$φ(n/i)*d$。
注:欧拉函数的通式为$φ(x)=x*\prod\limits_{i=1}^n (1-\frac{1}{p_i})$ ($p_i$为$x$的质因数)
代码:
#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,ans;
int phi(int x)
{
int res=x;
for (int i=;i*i<=x;i++)
{
if (x%i==)
{
res=res*(i-)/i;
while(x%i==) x/=i;
}
}
if (x>) res=res*(x-)/x;
return res;
}
signed main()
{
scanf("%lld",&n);
int sq=sqrt(n);
for (int i=;i<=sq;i++)
{
if (n%i==)
{
ans+=phi(n/i)*i;
if (i*i!=n) ans+=phi(i)*(n/i);
}
}
cout<<ans;
return ;
}
【SDOI2012】Longge 的问题 题解(欧拉函数)的更多相关文章
- 由 [SDOI2012]Longge的问题 探讨欧拉函数和莫比乌斯函数的一些性质和关联
本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞 ...
- BZOJ2705 SDOI2012 Longge的问题 【欧拉函数】
BZOJ2705 SDOI2012 Longge的问题 Description Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, ...
- BZOJ 2705 [SDOI2012]Longge的问题(欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2705 [题目大意] 求出∑gcd(i,N)(1<=i<=N) [题解] $ ...
- 【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)
题目链接 题意:求\(\sum_{i=1}^{n}\gcd(i,n)\) 首先可以肯定,\(\gcd(i,n)|n\). 所以设\(t(x)\)表示\(gcd(i,n)=x\)的\(i\)的个数. 那 ...
- 【POJ 2480】Longge's problem(欧拉函数)
题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...
- 题解报告:poj 2480 Longge's problem(欧拉函数)
Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...
- Longge's problem poj2480 欧拉函数,gcd
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6918 Accepted: 2234 ...
- Longge's problem(欧拉函数应用)
Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...
- POJ2480:Longge's problem(欧拉函数的应用)
题目链接:传送门 题目需求: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N ...
- poj2480——Longge's problem(欧拉函数)
Longge's problem Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9190 Accepted: 3073 ...
随机推荐
- .net core 服务注册生命周期
在Asp.Net core中的IServiceCollection容器中注册服务的生命周期分以下3种: 1.Transient 通过AddTransient注册,会在IServiceCollectio ...
- 03 flask源码剖析之threading.local和高级
03 threading.local和高级 目录 03 threading.local和高级 1.python之threading.local 2. 线程唯一标识 3. 自定义threading.lo ...
- linux专题(七):账号管理
http://dwz.date/UDf 简介 Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用户的账 ...
- Python面向对象02/类的空间问题、类与对象之间的关系、类与类之间的关系
Python面向对象02/类的空间问题.类与对象之间的关系.类与类之间的关系 目录 Python面向对象02/类的空间问题.类与对象之间的关系.类与类之间的关系 1. 类的空间问题 2. 类与对象之间 ...
- QTimer
目录 简述 详细说明 精度 替代QTimer 成员函数 信号 示例 简述 QTimer类提供了重复和单次触发信号的定时器. QTimer类为定时器提供了一个高级别的编程接口.很容易使用:首先,创建一个 ...
- P4017 最大食物链计数(洛谷)
老师开始帮我们查漏补缺啦!我们的老师这两天给了我们一些我们没怎么学的函数和算法,比如STL的函数和拓扑排序之类的,这个题就是讲拓扑排序的. 先看题板: 题目背景 你知道食物链吗?Delia 生物考试的 ...
- 集训作业 洛谷P1135 奇怪的电梯
这个题我见过!!! 我之前在石油大学的网站上做练习赛,提高了很多,这个题是我第一次在比赛里见到深搜. 当时蒙蔽的一批,现在发现好简单…… 这个题和普通的深搜没什么区别,甚至可以说简单了,因为这个是1维 ...
- Spring Boot 2.x基础教程:使用EhCache缓存集群
上一篇我们介绍了在Spring Boot中整合EhCache的方法.既然用了ehcache,我们自然要说说它的一些高级功能,不然我们用默认的ConcurrentHashMap就好了.本篇不具体介绍Eh ...
- 如何将elementUI 表格(el-table)和分页器(el-pagination)连接起来
el-table表格的代码: <template> <el-table :data="tableData" style="width: 100%&quo ...
- java enum 枚举类
图一代码: public enum LogMethodEnum { WEBCSCARDVALID("返回值"), WEBCSVERIFYPASSWORD("返回值&quo ...