连接跟踪初始化

基础参数的初始化:nf_conntrack_standalone_init 会调用nf_conntrack_init_start 完成连接跟踪基础参数的初始化, hash slab 扩展项 等;

nf_conntrack_l3proto_ipv4_init 函数初始化了协议和tuple操作函数的相关初始化;


static int ipv4_net_init(struct net *net)
{
int ret = 0;
/*
注册了和 IPv4 相关的几个 4 层 TCP、UDP、ICMP等协议
3个l4proto与1个l3proto在pernet的初始化
*/
ret = nf_ct_l4proto_pernet_register(net, &nf_conntrack_l4proto_tcp4);
if (ret < 0) {
pr_err("nf_conntrack_tcp4: pernet registration failed\n");
goto out_tcp;
}
ret = nf_ct_l4proto_pernet_register(net, &nf_conntrack_l4proto_udp4);
if (ret < 0) {
pr_err("nf_conntrack_udp4: pernet registration failed\n");
goto out_udp;
}
ret = nf_ct_l4proto_pernet_register(net, &nf_conntrack_l4proto_icmp);
if (ret < 0) {
pr_err("nf_conntrack_icmp4: pernet registration failed\n");
goto out_icmp;
}
ret = nf_ct_l3proto_pernet_register(net, &nf_conntrack_l3proto_ipv4);
if (ret < 0) {
pr_err("nf_conntrack_ipv4: pernet registration failed\n");
goto out_ipv4;
}
return 0;
out_ipv4:
nf_ct_l4proto_pernet_unregister(net, &nf_conntrack_l4proto_icmp);
out_icmp:
nf_ct_l4proto_pernet_unregister(net, &nf_conntrack_l4proto_udp4);
out_udp:
nf_ct_l4proto_pernet_unregister(net, &nf_conntrack_l4proto_tcp4);
out_tcp:
return ret;
}


static int __init nf_conntrack_l3proto_ipv4_init(void)
{
int ret = 0; need_conntrack();
nf_defrag_ipv4_enable();
/*
用户态与内核态交互通信的方法sockopt,写法也简单.
缺点就是使用 copy_from_user()/copy_to_user()完成内核和用户的通信, 效率其实不高, 多用在传递控制 选项 信息,不适合做大量的数据传输
*/
ret = nf_register_sockopt(&so_getorigdst);
if (ret < 0) {
pr_err("Unable to register netfilter socket option\n");
return ret;
} /**调用ipv4_net_init 完成相关初始化*/
ret = register_pernet_subsys(&ipv4_net_ops);
if (ret < 0) {
pr_err("nf_conntrack_ipv4: can't register pernet ops\n");
goto cleanup_sockopt;
}
/*注册hook */
ret = nf_register_hooks(ipv4_conntrack_ops,
ARRAY_SIZE(ipv4_conntrack_ops));
if (ret < 0) {
pr_err("nf_conntrack_ipv4: can't register hooks.\n");
goto cleanup_pernet;
}
/* nf_conntrack_l4proto tcp相关初始化 */
ret = nf_ct_l4proto_register(&nf_conntrack_l4proto_tcp4);
if (ret < 0) {
pr_err("nf_conntrack_ipv4: can't register tcp4 proto.\n");
goto cleanup_hooks;
}
/* nf_conntrack_l4proto udp相关初始化 */
ret = nf_ct_l4proto_register(&nf_conntrack_l4proto_udp4);
if (ret < 0) {
pr_err("nf_conntrack_ipv4: can't register udp4 proto.\n");
goto cleanup_tcp4;
}
/* nf_conntrack_l4proto icmp相关初始化 */
ret = nf_ct_l4proto_register(&nf_conntrack_l4proto_icmp);
if (ret < 0) {
pr_err("nf_conntrack_ipv4: can't register icmpv4 proto.\n");
goto cleanup_udp4;
}
/* nf_conntrack_l3proto ip相关初始化 */
ret = nf_ct_l3proto_register(&nf_conntrack_l3proto_ipv4);
if (ret < 0) {
pr_err("nf_conntrack_ipv4: can't register ipv4 proto.\n");
goto cleanup_icmpv4;
}
return ret; }

nf_conntrack_l3proto_ipv4  结构中包含了基础信息 tuple 钩子回调函数;

struct nf_conntrack_l3proto nf_conntrack_l3proto_ipv4 __read_mostly = {
.l3proto = PF_INET,
.name = "ipv4",
.pkt_to_tuple = ipv4_pkt_to_tuple,
.invert_tuple = ipv4_invert_tuple,
.print_tuple = ipv4_print_tuple,
.get_l4proto = ipv4_get_l4proto,
#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
.tuple_to_nlattr = ipv4_tuple_to_nlattr,
.nlattr_tuple_size = ipv4_nlattr_tuple_size,
.nlattr_to_tuple = ipv4_nlattr_to_tuple,
.nla_policy = ipv4_nla_policy,
#endif
#if defined(CONFIG_SYSCTL) && defined(CONFIG_NF_CONNTRACK_PROC_COMPAT)
.ctl_table_path = "net/ipv4/netfilter",
#endif
.init_net = ipv4_init_net,
.me = THIS_MODULE,
};
static bool ipv4_pkt_to_tuple(const struct sk_buff *skb, unsigned int nhoff,
struct nf_conntrack_tuple *tuple)
{/* 从ip头中获取源目的地址,存入tuple */
const __be32 *ap;
__be32 _addrs[2];
ap = skb_header_pointer(skb, nhoff + offsetof(struct iphdr, saddr),
sizeof(u_int32_t) * 2, _addrs);
if (ap == NULL)
return false; tuple->src.u3.ip = ap[0];
tuple->dst.u3.ip = ap[1]; return true;
} static bool ipv4_invert_tuple(struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_tuple *orig)
{
tuple->src.u3.ip = orig->dst.u3.ip;
tuple->dst.u3.ip = orig->src.u3.ip;
/* 根据原tuple地址设置新tuple,源目的地址均相反 */
return true;
} static void ipv4_print_tuple(struct seq_file *s,
const struct nf_conntrack_tuple *tuple)
{
seq_printf(s, "src=%pI4 dst=%pI4 ",
&tuple->src.u3.ip, &tuple->dst.u3.ip);
} static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
unsigned int *dataoff, u_int8_t *protonum)
{
const struct iphdr *iph;
struct iphdr _iph;
/* 获取ip头中的协议 */
iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
if (iph == NULL)
return -NF_ACCEPT; /* Conntrack defragments packets, we might still see fragments
* inside ICMP packets though. */
if (iph->frag_off & htons(IP_OFFSET))
return -NF_ACCEPT; *dataoff = nhoff + (iph->ihl << 2);
*protonum = iph->protocol; /* Check bogus IP headers */
if (*dataoff > skb->len) {
pr_debug("nf_conntrack_ipv4: bogus IPv4 packet: "
"nhoff %u, ihl %u, skblen %u\n",
nhoff, iph->ihl << 2, skb->len);
return -NF_ACCEPT;
} return NF_ACCEPT;
}

contrack _in helper confirm 等钩子函数的注册

* Connection tracking may drop packets, but never alters them, so
make it the first hook. */
static struct nf_hook_ops ipv4_conntrack_ops[] __read_mostly = {
{
.hook = ipv4_conntrack_in,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_PRE_ROUTING,
.priority = NF_IP_PRI_CONNTRACK,
},
{
.hook = ipv4_conntrack_local,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_LOCAL_OUT,
.priority = NF_IP_PRI_CONNTRACK,
},
{
.hook = ipv4_helper,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_POST_ROUTING,
.priority = NF_IP_PRI_CONNTRACK_HELPER,
},
{
.hook = ipv4_confirm,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_POST_ROUTING,
.priority = NF_IP_PRI_CONNTRACK_CONFIRM,
},
{
.hook = ipv4_helper,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_LOCAL_IN,
.priority = NF_IP_PRI_CONNTRACK_HELPER,
},
{
.hook = ipv4_confirm,
.pf = NFPROTO_IPV4,
.hooknum = NF_INET_LOCAL_IN,
.priority = NF_IP_PRI_CONNTRACK_CONFIRM,
},
};

基于ip层的协议回实现自己的nf_contrack_l4proto,现在以udp为例

das

struct nf_conntrack_l4proto nf_conntrack_l4proto_udp4 __read_mostly =
{
.l3proto = PF_INET,
.l4proto = IPPROTO_UDP,
.name = "udp",
.allow_clash = true,
.pkt_to_tuple = udp_pkt_to_tuple,
.invert_tuple = udp_invert_tuple,
.print_tuple = udp_print_tuple,
.packet = udp_packet,
.get_timeouts = udp_get_timeouts,
.new = udp_new,
.error = udp_error,
#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
.tuple_to_nlattr = nf_ct_port_tuple_to_nlattr,
.nlattr_to_tuple = nf_ct_port_nlattr_to_tuple,
.nlattr_tuple_size = nf_ct_port_nlattr_tuple_size,
.nla_policy = nf_ct_port_nla_policy,
#endif
#if IS_ENABLED(CONFIG_NF_CT_NETLINK_TIMEOUT)
.ctnl_timeout = {
.nlattr_to_obj = udp_timeout_nlattr_to_obj,
.obj_to_nlattr = udp_timeout_obj_to_nlattr,
.nlattr_max = CTA_TIMEOUT_UDP_MAX,
.obj_size = sizeof(unsigned int) * CTA_TIMEOUT_UDP_MAX,
.nla_policy = udp_timeout_nla_policy,
},
#endif /* CONFIG_NF_CT_NETLINK_TIMEOUT */
.init_net = udp_init_net,
.get_net_proto = udp_get_net_proto,
};
static bool udp_pkt_to_tuple(const struct sk_buff *skb,
unsigned int dataoff,
struct net *net,
struct nf_conntrack_tuple *tuple)
{
const struct udphdr *hp;
struct udphdr _hdr;
/*获取四册协议对应元祖信息*/
/* Actually only need first 8 bytes. */
hp = skb_header_pointer(skb, dataoff, sizeof(_hdr), &_hdr);
if (hp == NULL)
return false; tuple->src.u.udp.port = hp->source;
tuple->dst.u.udp.port = hp->dest; return true;
}

 

其注册L3 L4回调信息 后结构示意图如下所示:

在netfilter框架中利用nf_register_hook(struct nf_hook_ops *reg)、nf_unregister_hook(struct nf_hook_ops *reg)函数注册自己的钩子项;

上图来自:http://bbs.chinaunix.net/thread-4082396-1-1.html

linux nf_conntrack 连接跟踪机制 2的更多相关文章

  1. linux nf_conntrack 连接跟踪机制 3-hook

    conntrack hook函数分析 enum nf_ip_hook_priorities { NF_IP_PRI_FIRST = INT_MIN, NF_IP_PRI_CONNTRACK_DEFRA ...

  2. linux nf_conntrack 连接跟踪机制

    PRE_ROUTING和LOCAL_OUT点可以看作是整个netfilter的入口,而POST_ROUTING和LOCAL_IN可以看作是其出口; 报文到本地:PRE_ROUTING----LOCAL ...

  3. Netfilter&iptables:如何理解连接跟踪机制?

    如何理解Netfilter中的连接跟踪机制? 本篇我打算以一个问句开头,因为在知识探索的道路上只有多问然后充分调动起思考的机器才能让自己走得更远.连接跟踪定义很简单:用来记录和跟踪连接的状态. 问:为 ...

  4. Netfilter之连接跟踪实现机制初步分析

    Netfilter之连接跟踪实现机制初步分析 原文: http://blog.chinaunix.net/uid-22227409-id-2656910.html 什么是连接跟踪 连接跟踪(CONNT ...

  5. [转]nf_conntrack: table full, dropping packet 连接跟踪表已满,开始丢包 的解决办法

      nf_conntrack: table full, dropping packet  连接跟踪表已满,开始丢包 的解决办法 中午业务说机器不能登录,我通过USM管理界面登录单板的时候发现机器没有僵 ...

  6. linux内核netfilter连接跟踪的hash算法

    linux内核netfilter连接跟踪的hash算法 linux内核中的netfilter是一款强大的基于状态的防火墙,具有连接跟踪(conntrack)的实现.conntrack是netfilte ...

  7. linux下epoll实现机制

    linux下epoll实现机制 原作者:陶辉 链接:http://blog.csdn.net/russell_tao/article/details/7160071 先简单回顾下如何使用C库封装的se ...

  8. Linux信号(signal) 机制分析

    Linux信号(signal) 机制分析 [摘要]本文分析了Linux内核对于信号的实现机制和应用层的相关处理.首先介绍了软中断信号的本质及信号的两种不同分类方法尤其是不可靠信号的原理.接着分析了内核 ...

  9. 2017-2018-1 20155222 《信息安全系统设计基础》第10周 Linux下的IPC机制

    2017-2018-1 20155222 <信息安全系统设计基础>第10周 Linux下的IPC机制 IPC机制 在linux下的多个进程间的通信机制叫做IPC(Inter-Process ...

随机推荐

  1. 多测师_讲解python__004 函数

    # 函数:一个工具,随调随用# 降级代码冗余## 增加代码的复用性,提高开发效率,为了不成为cv战士## 提高程序扩展性## 函数有两个阶段:定义阶段,调用阶段.## 定义时:只检查函数体内代码语法, ...

  2. 慕课网go语言体系课抢先体验

    慕课网go语言体系课抢先体验,课程分四个阶段: <第一阶段go语言基础语法篇>,从go语言基础语法篇讲起,go语言环境集成,常用开发工具集成,常用数据类型讲解,流程控制,函数,结构体,方法 ...

  3. 【C语言程序设计】小游戏之俄罗斯方块(一)!适合初学者上手、练手!

    俄罗斯方块的核心玩法非常简单,所以制作起来并不是很复杂,我准备先用2篇文字的篇幅详细讲解一下俄罗斯方块的制作方法. 今天咱们算是第一篇,主要讲解俄罗斯方块中如何定义方块,以及如何实现方块的移动.旋转. ...

  4. linux(centos8):firewalld对于请求会选择哪个zone处理?

    一,firewalld对一个请求会适用哪个zone? 当接收到一个请求时,firewalld具体使用哪个zone? firewalld是通过三个步骤来判断的: source,即:源地址 interfa ...

  5. Helium文档1-WebUI自动化-环境准备与入门

    前言 Helium 是一款 Web 端自动化开源框架,全称是:Selenium-Python-Helium,从名字上就可以看出,Helium 似乎和 Selenium 息息相关,基于Selenium的 ...

  6. ubuntu JDK&SDK 环境变量配置

    ubuntu JDK&SDK 环境变量配置 一.下载JDK 1. 先卸载Ubuntu 带的openJDK: sudo apt-get purge openjdk* 2.到http://www. ...

  7. 常见的Python运行时错误

    date: 2020-04-01 14:25:00 updated: 2020-04-01 14:25:00 常见的Python运行时错误 摘自 菜鸟学Python 公众号 1. SyntaxErro ...

  8. 通过两行代码即可调整苹果电脑 Launchpad 图标大小

    之前用 13 寸 Mac 的时候我还没觉得,后来换了 16 寸就发现有点不对劲了.因为 Mac 的高分辨率,当你进入 Launchpad 界面,应用图标的大小可能会让你怀疑:这特么是苹果的设计吗?有点 ...

  9. 并发编程——多线程计数的更优解:LongAdder原理分析

    前言 最近在学习ConcurrentHashMap的源码,发现它采用了一种比较独特的方式对map中的元素数量进行统计,自然是要好好研究一下其原理思想,同时也能更好地理解ConcurrentHashMa ...

  10. 在 k8S 中搭建 SonarQube 7.4.9 版本(使用 PostgreSQL 数据库)

    搭建 SonarQube 和 PostgreSQL 服务 本文搭建的 SonarQube 版本是 7.4.9-community,由于在官方文档中声明 7.9 版本之后就不再支持使用 MySQL 数据 ...