有一个长度为m的字符串,由n种小写字母组成。对应的n种字母在这个字符串加上或者减去都有相应的费用,现在要将这个字符串变成回文串,问最低消费是多少?

Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).

Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").

FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.

Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.

Input

Line 1: Two space-separated integers: N and M
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.

Output

Line 1: A single line with a single integer that is the minimum cost to change the given name tag.

Sample Input

3 4
abcb
a 1000 1100
b 350 700
c 200 800

Sample Output

900

Hint

If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.
增加或者减少最少字母使其变为回文串是一个经典的dp问题,可转换为LCS求解,显然这是一个区间dp问题;

定义dp [ i ] [ j ] 为区间 i 到 j 变成回文的最小代价。

那么对于dp[i][j]三种情况

首先:对于一个串如果s[i]==s[j],那么dp[i][j]=dp[i+1][j-1];

其次:如果dp[i+1][j]是回文串,那么dp[i][j]=dp[i+1][j]+min(add[i],del[i]);

最后,如果dp[i][j-1]是回文串,那么dp[i][j]=dp[i][j-1] + min(add[j],del[j]);

 
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<string>
#include<iostream>
using namespace std;
const int inf =0x3f3f3f3f;
int dp[2005][2005],x[256],i,add,del,n,m;
int main()
{
char s[2005],c;
scanf("%d%d",&n,&m);
scanf("%s",s+1);
for(i=1;i<=n;i++)
{
getchar();//吸收回车
scanf("%c %d%d",&c,&add,&del);
x[c]=min(add,del);//对于拼凑回文串,加上字符和减去字符是一样的
} //所以这里选择成本小的途径
int k;
for(k=1;k<m;k++)//k次搜索,最差一个字母构成回文==每次删掉一个字母
{
for(i=1;i<=m-k;i++)//从1到m-k的长度
{
int j=i+k;
dp[i][j]=inf;//初始化
dp[i][j]=min(dp[i+1][j]+x[s[i]],dp[i][j-1]+x[s[j]]);
if(s[i]==s[j])
dp[i][j]=min(dp[i][j],dp[i+1][j-1]);
}
}
printf("%d\n",dp[1][m]);//从1到m构成回文串的最小花费
}

F - Cheapest Palindrome的更多相关文章

  1. POJ 题目3280 Cheapest Palindrome(区间DP)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7148   Accepted: 34 ...

  2. 【POJ】3280 Cheapest Palindrome(区间dp)

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 10943   Accepted: 5 ...

  3. Cheapest Palindrome(区间DP)

    个人心得:动态规划真的是够烦人的,这题好不容易写出了转移方程,结果超时,然后看题解,为什么这些题目都是这样一步一步的 递推,在我看来就是懵逼的状态,还有那个背包也是,硬是从最大的V一直到0,而这个就是 ...

  4. POJ3280 Cheapest Palindrome 【DP】

    Cheapest Palindrome Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6013   Accepted: 29 ...

  5. 【POJ - 3280】Cheapest Palindrome(区间dp)

    Cheapest Palindrome 直接翻译了 Descriptions 给定一个字符串S,字符串S的长度为M(M≤2000),字符串S所含有的字符的种类的数量为N(N≤26),然后给定这N种字符 ...

  6. [USACO07OPEN]便宜的回文Cheapest Palindrome

    字串S长M,由N个小写字母构成.欲通过增删字母将其变为回文串,增删特定字母花费不同,求最小花费.        题目描述见上            显然 这是一道区间DP 从两头DP,枚举长度啥的很套 ...

  7. Cheapest Palindrome [POJ3280] [区间DP] [经典]

    一句话题意:每个字母添加和删除都相应代价(可以任意位置 增加/删除),求把原串变成回文串的最小代价 Description 保持对所有奶牛的跟踪是一项棘手的任务,因此农场主约翰已经安装了一个系统来实现 ...

  8. [luoguP2890] [USACO07OPEN]便宜的回文Cheapest Palindrome(DP)

    传送门 f[i][j] 表示区间 i 到 j 变为回文串所需最小费用 1.s[i] == s[j] f[i][j] = f[i + 1][j - 1] 2.s[i] != s[j] f[i][j] = ...

  9. POJ 3280 Cheapest Palindrome DP题解

    看到Palindrome的题目.首先想到的应该是中心问题,然后从中心出发,思考怎样解决. DP问题通常是从更加小的问题转化到更加大的问题.然后是从地往上 bottom up地计算答案的. 能得出状态转 ...

随机推荐

  1. vrp OS Switch Rotuer Application

    交换机可以隔离冲突与,路由器可以隔离广播域,这两种设备在企业网络中应用越来越广泛.随着越来越多的终端接入到网络中,网络设备的负担也越来越重,这时网络设备可以通过华为专有的VRP系统来提升运行效率. 通 ...

  2. Solon rpc 之 SocketD 协议 - 单链接双向RPC模式

    Solon rpc 之 SocketD 协议系列 Solon rpc 之 SocketD 协议 - 概述 Solon rpc 之 SocketD 协议 - 消息上报模式 Solon rpc 之 Soc ...

  3. FastApi学习(二)

    前言 继续学习 此为第二篇, 还差些知识点就可以结束, 更多的比如用户的身份校验/ swagger 文档修改等以后会单独写 正文 使用枚举来限定参数 可以使用枚举的方式来限定参数为某几个值之内才通过 ...

  4. Server 2012 R2 Standard 安装运行PCS7时出现“无法启动此程序,因为计算机中丢失api-ms-win-crt-runtime-l1-1-0.dll”解决方法

    网上看到了这篇文章https://www.jianshu.com/p/21f4bb8b5502,根据思路自己尝试,解决了丢失的问题.提示[计算机中丢失api-ms-win-crt-runtime-l1 ...

  5. 【Java】Java关键字、含义

    Java关键字 来自 Java 核心技术卷I 基础知识(原书第10 版)/( 美)凯S 霍斯特曼(Cay S . Horstmann )著: 周立新等译一北京:机械工业出版社, 2016 . 8 Ja ...

  6. 深入解析vue响应式原理

    摘要:本文主要通过结合vue官方文档及源码,对vue响应式原理进行深入分析. 1.定义 作为vue最独特的特性,响应式可以说是vue的灵魂了,表面上看就是数据发生变化后,对应的界面会重新渲染,那么响应 ...

  7. 干电池升压5V,功耗10uA

    PW5100干电池升压5V芯片 输出电容: 所以为了减小输出的纹波,需要比较大的输出电容值.但是输出电容过大,就会使得系统的 反应时间过慢,成本也会增加.所以建议使用一个 22uF 的电容,或者两个 ...

  8. 【Android】报错 Please ensure Hyper-V is disabled in Windows Features, or refer to the Intel HAXM 的解决方案

    参考文章 实测华为锐龙本(adm yes)安装Android avd虚拟机教程 环境 Android Studio 3.6; Windows 1909; AMD Ryzen 4800U with Ra ...

  9. Soul 网关 Nacos 数据同步源码解析

    学习目标: 学习Soul 网关 Nacos 数据同步源码解析 学习内容: 环境配置 Soul 网关 Nacos 数据同步基本概念 源码分析 学习时间:2020年1月28号 早7点 学习产出: 环境配置 ...

  10. Scalable Go Scheduler Design Doc

    https://docs.google.com/document/d/1TTj4T2JO42uD5ID9e89oa0sLKhJYD0Y_kqxDv3I3XMw/ Scalable Go Schedul ...