一、概述

快速排序(quick sort)是一种分治排序算法。该算法首先 选取 一个划分元素(partition element,有时又称为pivot);接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分)、划分元素pivot、right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上;然后分别对left和right两个部分进行 递归排序。

其中,划分元素的 选取 直接影响到快速排序算法的效率,通常选择列表的第一个元素或者中间元素或者最后一个元素作为划分元素,当然也有更复杂的选择方式;划分 过程根据划分元素重排列表,是快速排序算法的关键所在,该过程的原理示意图如下:

<-- 选取划分元素 -->

<-- 划分过程 -->

<-- 划分结果 -->

快速排序算法的优点是:原位排序(只使用很小的辅助栈),平均情况下的时间复杂度为 O(n log n)。快速排序算法的缺点是:它是不稳定的排序算法,最坏情况下的时间复杂度为 O(n2)。

二、Python实现

1、标准实现

#!/usr/bin/env python
# -*- coding: utf-8 -*-
def stdQuicksort(L):
qsort(L, 0, len(L) - 1)
def qsort(L, first, last):
if first < last:
split = partition(L, first, last)
qsort(L, first, split - 1)
qsort(L, split + 1, last)
def partition(L, first, last):
# 选取列表中的第一个元素作为划分元素
pivot = L[first]
leftmark = first + 1
rightmark = last
while True:
while L[leftmark] <= pivot:
# 如果列表中存在与划分元素pivot相等的元素,让它位于left部分
# 以下检测用于划分元素pivot是列表中的最大元素时,
#防止leftmark越界
if leftmark == rightmark:
break
leftmark += 1
while L[rightmark] > pivot:
# 这里不需要检测,划分元素pivot是列表中的最小元素时,
# rightmark会自动停在first处
rightmark -= 1
if leftmark < rightmark:
# 此时,leftmark处的元素大于pivot,
#而rightmark处的元素小于等于pivot,交换二者
L[leftmark], L[rightmark] = L[rightmark], L[leftmark]
else:
break
# 交换first处的划分元素与rightmark处的元素
L[first], L[rightmark] = L[rightmark], L[first]
# 返回划分元素pivot的最终位置
return rightmark

2、Pythonic实现

# -*- coding: utf-8 -*-
def pycQuicksort(L):
if len(L) <= 1: return L
return pycQuicksort([x for x in L if x < L[0]]) + \
[x for x in L if x == L[0]] + \
pycQuicksort([x for x in L if x > L[0]])

对比 标准实现 可以看出,Pythonic实现 更简洁、更直观、更酷。但需要指出的是,Pythonic实现 使用了Python中的 列表解析 (List Comprehension,也叫列表展开、列表推导),每一次 递归排序 都会产生新的列表,因此失去了快速排序算法本来的 原位排序 的优点。

三、算法测试

if __name__ == '__main__':
L = [54, 26, 93, 17, 77, 31, 44, 55, 20]
M = L[:]
print('before stdQuicksort: ' + str(L))
stdQuicksort(L)
print('after stdQuicksort: ' + str(L))
print('before pycQuicksort: ' + str(M))
print('after pycQuicksort: ' + str(pycQuicksort(M)))

运行结果:

$ python testquicksort.py
before stdQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after stdQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]
before pycQuicksort: [54, 26, 93, 17, 77, 31, 44, 55, 20]
after pycQuicksort: [17, 20, 26, 31, 44, 54, 55, 77, 93]

Python实现的数据结构与算法之快速排序详解的更多相关文章

  1. Python实现的数据结构与算法之队列详解

    本文实例讲述了Python实现的数据结构与算法之队列.分享给大家供大家参考.具体分析如下: 一.概述 队列(Queue)是一种先进先出(FIFO)的线性数据结构,插入操作在队尾(rear)进行,删除操 ...

  2. Python实现的数据结构与算法之链表详解

    一.概述 链表(linked list)是一组数据项的集合,其中每个数据项都是一个节点的一部分,每个节点还包含指向下一个节点的链接.根据结构的不同,链表可以分为单向链表.单向循环链表.双向链表.双向循 ...

  3. 用Python实现的数据结构与算法:快速排序

    一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left( ...

  4. 用Python实现的数据结构与算法:开篇

    一.概述 用Python实现的数据结构与算法 涵盖了常用的数据结构与算法(全部由Python语言实现),是 Problem Solving with Algorithms and Data Struc ...

  5. 快速排序详解(C语言/python)

    快速排序详解 介绍: 快速排序于C. A. R. Hoare在1960年提出,是针对冒泡排序的一种改进.它每一次将需要排序的部分划分为俩个独立的部分,其中一个部分的数比的数都小.然后再按照这个方法对这 ...

  6. JVM垃圾回收算法及回收器详解

    引言 本文主要讲述JVM中几种常见的垃圾回收算法和相关的垃圾回收器,以及常见的和GC相关的性能调优参数. GC Roots 我们先来了解一下在Java中是如何判断一个对象的生死的,有些语言比如Pyth ...

  7. 【转】Python的hasattr() getattr() setattr() 函数使用方法详解

    Python的hasattr() getattr() setattr() 函数使用方法详解 hasattr(object, name)判断一个对象里面是否有name属性或者name方法,返回BOOL值 ...

  8. 【python库模块】Python subprocess模块功能与常见用法实例详解

    前言 这篇文章主要介绍了Python subprocess模块功能与常见用法,结合实例形式详细分析了subprocess模块功能.常用函数相关使用技巧. 参考 1. Python subprocess ...

  9. 利用python求解物理学中的双弹簧质能系统详解

    利用python求解物理学中的双弹簧质能系统详解 本文主要给大家介绍了关于利用python求解物理学中双弹簧质能系统的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 物理的 ...

随机推荐

  1. JS 替换日期的横杠为斜杠

    例如1: <script type="text/javascript">      var dt = "2010-01-05";           ...

  2. 招新裁老,两面派互联网大厂,培训三个月,就拿15K,凭什么?

    看到一位朋友在发帖子求问:亲身经历,(如有谎言我名字倒过来写)一个大学同学18年毕业的.在兰州一个二本学的兽医农牧,毕业难找工作,去深圳一个机构培训了三个月吧,然后就去做大数据 算法了,然后又去做ja ...

  3. 封装Vue Element的dialog弹窗组件

    我本没有想着说要封装一个弹窗组件,但有同行的朋友在问我,而且弹窗组件也确实在项目开发中用的比较多.思前想后,又本着样式统一且修改起来方便的原则,还是再为大家分享一个我所封装的弹窗组件吧. 其实,并不是 ...

  4. java里equals和hashCode之间什么关系

    如果要比较实际内存中的内容,那就要用equals方法,但是!!! 如果是你自己定义的一个类,比较自定义类用equals和==是一样的,都是比较句柄地址,因为自定义的类是继承于object,而objec ...

  5. Laravel chunk和chunkById的坑

    Laravel chunk和chunkById的坑 公司中的项目在逐渐的向Laravel框架进行迁移.在编写定时任务脚本的时候,用到了chunk和chunkById的API,记录一下踩到的坑. 一.前 ...

  6. Python数据清洗:提取爬虫文本中的电话号码

    步骤索引 效果展示 注意事项 代码 很多人学习python,不知道从何学起.很多人学习python,掌握了基本语法过后,不知道在哪里寻找案例上手.很多已经做案例的人,却不知道如何去学习更加高深的知识. ...

  7. [HGAME Week2] Cosmos的博客后台

    觉得这道题考察的东西比较综合而且比较简单,就写上了.因为写这篇文章的时候环境已经关闭了,所以引用了其他师傅wp的图片 本题考察了:php://filter伪协议文件包含.var_dump()输出GLO ...

  8. Jmeter 断言-检查点

    1. http请求/添加/断言/响应断言 2. 输入一个返回数据里没有的参数 3.果然报错了 断言的作用是用来查看接口文档里是否有自己想要的数据!

  9. [oracle/sql]写SQL从学生考试成绩三表中选出五门分综合超过720的尖子

    任务:有学生,科目,考分三张表,需要从中筛选出五门考分总和超过720的学生. 科目表最简单只有五条记录: CREATE TABLE tb_course ( id NUMBER not null pri ...

  10. Go Http包解析:为什么需要response.Body.Close()

    简单来讲就是:为了提高效率,http.Get 等请求的 TCP 连接是不会关闭的(再次向同一个域名请求时,复用连接),所以必须要手动关闭. 2019-01-24 10:43:32 更新 不管是否使用 ...