描述

暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近遇到了一个难题,让他百思不得其解,他非常郁闷。。亲爱的你能帮帮他吗?

问题是我们经常见到的整数划分,给出两个整数 n , m ,要求在 n 中加入m - 1 个乘号,将n分成m段,求出这m段的最大乘积

输入
第一行是一个整数T,表示有T组测试数据

接下来T行,每行有两个正整数 n,m ( 1<= n < 10^19, 0 < m <= n的位数);
输出
输出每组测试样例结果为一个整数占一行
样例输入
2
111 2
1111 2
样例输出
11

121

这题是区间dp,用dp[i][j]表示前i个数中插入j个乘号所得的最大乘积,先初始化dp[i][1],然后用状态转移方程dp[i][j]=max(dp[i][j],dp[k][j-1]*shu(k+1,i));就可以了,注意要用unsigned long long

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll unsigned long long
char str[30];
ll dp[25][25];
ll shu(int l,int r)
{
int i,j;
ll num=0;
for(i=l;i<=r;i++){
num=num*10+str[i]-'0';
}
return num;
} int main()
{
int i,j,T,len1,len,m,k;
ll num;
scanf("%d",&T);
while(T--)
{
scanf("%s%d",str+1,&m);
len1=strlen(str+1);
m--;
if(len1==1){
printf("%lld\n",str[1]-'0');continue;
}
num=0;
if(m==0){
for(i=1;i<=len1;i++){
num=num*10+str[i]-'0';
}
printf("%llu\n",num);
continue;
}
memset(dp,0,sizeof(dp));
for(i=2;i<=len1;i++){
for(k=1;k<i;k++){
dp[i][1]=max(dp[i][1],shu(1,k)*shu(k+1,i));
}
}
for(j=2;j<=m;j++){
for(i=j+1;i<=len1;i++){
for(k=j;k<i;k++)
dp[i][j]=max(dp[i][j],dp[k][j-1]*shu(k+1,i));
} }
printf("%llu\n",dp[len1][m]);
}
return 0;
}

也可以用四边形优化:(和邮局那题差不多的优化思路)

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<algorithm>
using namespace std;
#define ll unsigned long long
char str[30];
ll dp[25][25];
int s[25][25];
ll shu(int l,int r)
{
int i,j;
ll num=0;
for(i=l;i<=r;i++){
num=num*10+str[i]-'0';
}
return num;
} int main()
{
int i,j,T,len1,len,m,k;
ll num;
scanf("%d",&T);
while(T--)
{
scanf("%s%d",str+1,&m);
len1=strlen(str+1);
m--;
if(len1==1){
printf("%lld\n",str[1]-'0');continue;
}
num=0;
if(m==0){
for(i=1;i<=len1;i++){
num=num*10+str[i]-'0';
}
printf("%llu\n",num);
continue;
}
memset(dp,0,sizeof(dp));
for(i=2;i<=len1;i++){
for(k=1;k<i;k++){
dp[i][1]=max(dp[i][1],shu(1,k)*shu(k+1,i));
}
s[i][1]=2;
}
for(j=2;j<=m;j++){
s[len1+1][j]=len1-1;
for(i=len1;i>j;i--){
for(k=s[i][j-1];k<=s[i+1][j];k++){
if(dp[i][j]<dp[k][j-1]*shu(k+1,i)){
dp[i][j]=dp[k][j-1]*shu(k+1,i);
s[i][j]=k;
}
} /*for(k=j;k<i;k++){
dp[i][j]=max(dp[i][j],dp[k][j-1]*shu(k+1,i));
}*/
} }
printf("%llu\n",dp[len1][m]);
}
return 0;
}

NYOJ746——整数划分(四)的更多相关文章

  1. nyoj746 整数划分(四)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近遇到 ...

  2. nyoj746 整数划分

    nyoj746 http://acm.nyist.net/JudgeOnline/problem.php?pid=746 一道区间dp的题目: 设:a[i][j]为那一串数字中从第i位到第j位的数是多 ...

  3. ACM 整数划分(四)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  4. 整数划分 (区间DP)

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  5. 整数划分 Integer Partition(二)

    本文是整数划分的第二节,主要介绍整数划分的一些性质. 一 先来弥补一下上一篇文章的遗留问题:要求我们所取的 (n=m1+m2+...+mi )中  m1 m2 ... mi连续,比如5=1+4就不符合 ...

  6. 大概是:整数划分||DP||母函数||递推

    整数划分问题 整数划分是一个经典的问题. Input 每组输入是两个整数n和k.(1 <= n <= 50, 1 <= k <= n) Output 对于每组输入,请输出六行. ...

  7. HDU4632 Poj2955 括号匹配 整数划分 P1880 [NOI1995]石子合并 区间DP总结

    题意:给定一个字符串 输出回文子序列的个数    一个字符也算一个回文 很明显的区间dp  就是要往区间小的压缩! #include<bits/stdc++.h> using namesp ...

  8. 【noi 2.6_8787】数的划分(DP){附【转】整数划分的解题方法}

    题意:问把整数N分成K份的分法数.(与"放苹果"不同,在这题不可以有一份为空,但可以类比)解法:f[i][j]表示把i分成j份的方案数.f[i][j]=f[i-1][j-1](新开 ...

  9. 51nod p1201 整数划分

    1201 整数划分 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2, ...

随机推荐

  1. python学习笔记 | 递归思想

    1.引子 大师 L. Peter Deutsch 说过: To Iterate is Human, to Recurse, Divine. 中文译为:人理解迭代,神理解递归 2.什么是递归 简单理解: ...

  2. ip访问本机vs调试项目

    环境:win10 vs2019 webapi F5启动调试. 问题:localhost可以访问,127.0.0.1和本机ip访问不了.比如想让别人浏览一下看效果,或者测试人员测试功能,每次修改都有重新 ...

  3. 【Nginx】使用keepalive和nginx搭载高可用

    首先介绍一下Keepalived,它是一个高性能的服务器高可用或热备解决方案,Keepalived主要来防止服务器单点故障的发生问题,可以通过其与Nginx的配合实现web服务端的高可用. Keepa ...

  4. 【Oracle】重命名表空间

    将表空间重新命名 SQL>   alter tablespace 原名 rename to 新名; 在查看下是否命名成功 SQL> select tablespace_name from ...

  5. 阿里云OSS对象存储服务(一)

    一.开通"对象存储OSS"服务 申请阿里云账号 实名认证 开通"对象存储OSS"服务 进入管理控制台 二.控制台使用 1.创建Bucket 命名:guli-fi ...

  6. Server Tracking of Client Session State Changes Connection Management

    MySQL :: MySQL 8.0 Reference Manual :: 5.1.12 Connection Management https://dev.mysql.com/doc/refman ...

  7. WebSocket TCP HTTP

    RFC 6455 - The WebSocket Protocol https://tools.ietf.org/html/rfc6455 1.5. Design Philosophy _This s ...

  8. Flutter环境搭建遇坑小结(二)

    在上一节中,已经对Flutter运行中始终卡在Running Gradle task 'assembleDebug'...,做出了解决方案,继续往下运行,但是新的问题又出现了: Failed to i ...

  9. MySQL按照(windows)及常用命令

    MySQL语法规则 关键字与函数名称全部大写 数据库名称.表名称.字段名称全部小写 SQL 语句必须以分号结尾 MySQL安装 MySQL配置: 在cmd中输入 mysql,提示['mysql' 不是 ...

  10. Java中运行javascript代码

    Java中运行javascript代码 1.Java 代码 2.JS代码 2.1demoWithParams.js 2.2demoWithListParams.js 原文作者:russle 原文地址: ...