算法导论 第18章 B树
与其他树的结构不同的是  B数是多叉而不是二叉树 而且分叉因子很大
一般使用于数据库 针对需要硬盘IO的情况而使用 可以降低磁盘IO
B树的一个节点是以磁盘的页面为单位,而不是数据内容为单位 一般一个节点等于一个完整的磁盘页

以下B树性质是本人理解  具体定义可查阅算法导论18章节
除了根节点以外 所有节点拥有T-1个 到 2T-1个关键字
关键字升序或者降序排列
节点拥有T个到2T个指针 指向子节点 定义为子节点
若节点仅拥有关键字而无指针 为叶子节点 在树的最下端
T=2时候 树拥有2、3或者4个子节点 成为2-3-4树

以下为我学习的一个简单代码 确定了B树的结构和创建、查找功能 打印节点数值功能。

增删功能比较麻烦,后继增加

// 1213.cpp : 定义控制台应用程序的入口点。
// #include "stdafx.h"
#include <iostream>
#include <list>
#include <vector>
#include <assert.h>
using namespace std; #define t 2; struct MyB_Tree {
size_t keySize_;
bool isLeaf_;
std::vector<size_t> keys_;
std::vector<MyB_Tree*> subTrees_;
MyB_Tree() {
keySize_ = 0;
isLeaf_ = true;
}
}; struct SearchResult {
MyB_Tree* pBTree_;
size_t keyNum_;
SearchResult() {
pBTree_ = NULL;
keyNum_ = 0;
}
SearchResult(MyB_Tree* pBTree, size_t keyNum) {
pBTree_ = pBTree;
keyNum_ = keyNum;
}
}; MyB_Tree* CreateB_TreeNode() {
MyB_Tree* pBTree = new MyB_Tree();
return pBTree;
} bool BTreeeSearch(MyB_Tree* pBTree, size_t value, SearchResult& result) {
bool ret = false;
size_t i = 0;
while (i <pBTree->keySize_ && value > pBTree->keys_[i]) {
i++;
}
if (i <pBTree->keySize_ && value == pBTree->keys_[i])
{
result.pBTree_ = pBTree;
result.keyNum_ = i;
ret = true;
return ret;
}
if (pBTree->isLeaf_) {
return ret;
}
else {
return BTreeeSearch(pBTree->subTrees_[i], value, result);
}
} void PrintTree(MyB_Tree* p) {
std::cout << "//==========================\nstart print keys : ";
for (int i = 0; i<p->keySize_; i++) {
std::cout << p->keys_[i] << " ";
} std::cout << "\n//==========================" << std::endl;
if (!p->isLeaf_) {
for (int i = 0; i <= p->keySize_; i++)
{
PrintTree(p->subTrees_[i]);
}
}
} int main(int argc, char *argv[])
{
MyB_Tree* root = CreateB_TreeNode();
MyB_Tree* subright = CreateB_TreeNode();
MyB_Tree* subleft = CreateB_TreeNode(); root->keySize_ = 1;
root->keys_.push_back(20); subleft->keySize_ = 2;
subleft->keys_.push_back(10);
subleft->keys_.push_back(19); subright->keySize_ = 3;
subright->keys_.push_back(21);
subright->keys_.push_back(25);
subright->keys_.push_back(30); root->isLeaf_ = false;
root->subTrees_.push_back(subleft);
root->subTrees_.push_back(subright); PrintTree(root); SearchResult result;
assert(BTreeeSearch(root, 33, result) == false);
assert(BTreeeSearch(root, 25, result) == true);
assert(result.pBTree_ == subright);
assert(result.keyNum_ == 1); std::cout << "finished " << std::endl;
return 0;
}

运行截图

代码建立了一个B树

结构如下

B-Tree 学习的更多相关文章

  1. 珂朵莉树(Chtholly Tree)学习笔记

    珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......) ...

  2. dsu on tree学习笔记

    前言 一次模拟赛的\(T3\):传送门 只会\(O(n^2)\)的我就\(gg\)了,并且对于题解提供的\(\text{dsu on tree}\)的做法一脸懵逼. 看网上的其他大佬写的笔记,我自己画 ...

  3. Gradient Boosting Decision Tree学习

    Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...

  4. Merkle Tree学习

    /*最近在看Ethereum,其中一个重要的概念是Merkle Tree,以前从来没有听说过,所以查了些资料,学习了Merkle Tree的知识,因为接触时间不长,对Merkle Tree的理解也不是 ...

  5. Link Cut Tree学习笔记

    从这里开始 动态树问题和Link Cut Tree 一些定义 access操作 换根操作 link和cut操作 时间复杂度证明 Link Cut Tree维护链上信息 Link Cut Tree维护子 ...

  6. 矩阵树定理(Matrix Tree)学习笔记

    如果不谈证明,稍微有点线代基础的人都可以在两分钟内学完所有相关内容.. 行列式随便找本线代书看一下基本性质就好了. 学习资源: https://www.cnblogs.com/candy99/p/64 ...

  7. k-d tree 学习笔记

    以下是一些奇怪的链接有兴趣的可以看看: https://blog.sengxian.com/algorithms/k-dimensional-tree http://zgjkt.blog.uoj.ac ...

  8. Codeforces 600E. Lomsat gelral(Dsu on tree学习)

    题目链接:http://codeforces.com/problemset/problem/600/E n个点的有根树,以1为根,每个点有一种颜色.我们称一种颜色占领了一个子树当且仅当没有其他颜色在这 ...

  9. splay tree 学习笔记

    首先感谢litble的精彩讲解,原文博客: litble的小天地 在学完二叉平衡树后,发现这是只是一个不稳定的垃圾玩意,真正实用的应有Treap.AVL.Splay这样的查找树.于是最近刚学了学了点S ...

  10. 【转载】决策树Decision Tree学习

    本文转自:http://www.cnblogs.com/v-July-v/archive/2012/05/17/2539023.html 最近在研究规则引擎,需要学习决策树.决策表等算法.发现篇好文对 ...

随机推荐

  1. Sla子分类账表结构

    --基础事件关系图Select * From xla_entity_types_vl; --事件实体Select * From xla_entity_id_mappings;--实体ID对应表Sele ...

  2. phoenix将hdfs数据导入hbase

    http://phoenix.apache.org/bulk_dataload.html

  3. 动态组合lambda 表达式

    //记录实体集合—动态组合lambda 表达式 Expression<Func<AdEntity, bool>> thirdWhere = p => p.Observer ...

  4. Mysql binlog

    理解Mysql binlog 日志的三种模式   本文介绍下,mysql中binlog日志的三种模式,了解了各种模式的不同之处,才能更好地应用.有需要的朋友建议参考下.   一,模式1 Row Lev ...

  5. Linux常用目录及文件

    1./etc/sysconfig/network 操作相关:hostname设置 2./etc/sysconfig/network-scripts/ifcfg-ethX(X为0.1等编号,一般为0) ...

  6. ajaxfileupload.js的简单使用

    上传文件 未选择任何文件 引入 <script src="../javaScript/ajaxfileupload.js"></script> <bu ...

  7. C6713的Boot mode

    2014年7月23日,终于把困扰我两个月的问题解决了,甚是嗨皮,所以做下记录,以供后人参考之用. 问题描述:我用的片子是TMS320C6713,通过EMIF总线连接的FLASH,此FLASH分为两部分 ...

  8. python之路-Day11

    引子 到目前为止,我们已经学了网络并发编程的2个套路, 多进程,多线程,这哥俩的优势和劣势都非常的明显,我们一起来回顾下 协程 协程,又称微线程,纤程.英文名Coroutine.一句话说明什么是线程: ...

  9. Eclipse设置默认注释

    在 windows-->preferenceJava-->Code Style-->Code Templatescode-->new Java file点编辑,覆盖原文本: $ ...

  10. bootstrap datetimerange

    天用的了bootstrap日期插件感觉搜索的资料不是很多在此写下一些使用的心得: 插件开源地址:daterangepicker日期控件, 插件使用只要按照开源中的文档信息来就好先包括以下引用: < ...