Multi-task Learning for Stock Selection 

Joumana Ghosn and Yoshua Bengio

摘要

用人工神经网络预测未来回报以便于做出对应的金融决策时,我们需要考虑是为每支stock训练一个独立的网络结构还是所有的stocks能够共享一个网络结构。本文采用了一种折中的方案:将每支股票的未来回报作为一个task,那么不同股票间的模型会共享一些参数,这是一种多任务学习的形式。这种方法的年收益比多种benchmarks高14%。

前言

以往的对于金融时间序列的研究展现了很强的非线性,由此可以理解ANN的应用广泛。这些模型融合多类解释变量:(1)技术变量:包括过去的价格序列;(2)微观经济股票变量(股票收益);(3)宏观经济变量(商业周期相关的信息)。本文重点探索这样的问题:不同股票对待不同变量的方式不同还是相同?

本文做了一系列实验:使用不同参数子集作为不同股票模型间的共享参数。

本文的实验数据:9 years of data concerning 35 large capitalization companies of the Toronto Stock Exchange.

本文的优化目标:directly optimize a financial criterion,而非minimize the mean squared prediction error。前者的效果要好于后者。

参数共享(parameter sharing)以及多任务学习 

训练数据:

优化目标:-the function of the desired output and the output of the learner

预测模型:

基于相似任务来自动选择假设空间的方法已经被广泛研究。这种研究的认为:学习器是嵌入到现实世界中多个相关的任务中的(many related tasks),学习一个任务的知识可以有助于更好更快的学习一个新的任务。一些方法认为这些相关的任务并不是同时可用的:一些以前学过的任务获得的知识可以转移(transferred)到新的任务上。这里我们研究的所有任务都是并行学习的,因为我们的任务不在于使用多任务学习的方式来改善学习效率,而是用来提高学习的泛化能力。以Baxter1995年的工作为例,为每个任务训练一个神经网络,这些神经网络的第一隐层是共享的,但是后面的各层是任务相关的。共享层(The shared layers):使用所有任务中的训练数据来获取知识,从而构建合适的内部表示。任务相关层(Task-specific layers):使用内部表示来学习任务相关的网络权重。

股票选择应用(Application of Stock Selection)

数据集:36  stocks (1986.2~1994.1,96 months) one can buy or sell monthly

5 explanatory variables (features): 2 macro-economic variables (yields of long-term bonds ; the Consumer Price Index);

3 micro-economic variables (the series of dividend yields ; the series of ratios of stock price to book value of the company ; Spline extrapolation)

train/test split: 前k年做training,接下来1年做testing (不同的训练窗口k=3,4,5,6,7)

四种不同的参数共享方式(four types of parameter sharing):

(1) sharing everything:共享所有的参数

(2) sharing only the parameters of the first hidden layers: 仅共享第一隐层的参数

(3) sharing only the output layer parameter:仅共享最后的输出层参数

(4) not sharing anying:为每个stock训练一个独立的模型

结论:

(1) 最好的结果:采用一个共享的隐层以及独立的输出层,性能改进原因在于允许一些参数是不共享

(2) 共享一些参数比完全独立的模型得到的结果更一致

(3) 采用多任务学习得到的结果比benchmark结果要好

参考文献:

1. Using a Financial Training Criterion Rather than a Prediction Criterion, Yoshua Bengio, 1996, Technical Report

阅读笔记Multi-task Learning for Stock Selection [NIPS1996]的更多相关文章

  1. ZH奶酪:【阅读笔记】Deep Learning, NLP, and Representations

    中文译文:深度学习.自然语言处理和表征方法 http://blog.jobbole.com/77709/ 英文原文:Deep Learning, NLP, and Representations ht ...

  2. CVPR2022 Oral OGM-GE阅读笔记

    标题:Balanced Multimodal Learning via On-the-fly Gradient Modulation(CVPR 2022 Oral) 论文:https://arxiv. ...

  3. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  4. Deep Learning of Graph Matching 阅读笔记

    Deep Learning of Graph Matching 阅读笔记 CVPR2018的一篇文章,主要提出了一种利用深度神经网络实现端到端图匹配(Graph Matching)的方法. 该篇文章理 ...

  5. 【转载】 《Human-level concept learning through probabilistic program induction》阅读笔记

    原文地址: https://blog.csdn.net/ln1996/article/details/78459060 --------------------- 作者:lnn_csdn 来源:CSD ...

  6. 个性探测综述阅读笔记——Recent trends in deep learning based personality detection

    目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...

  7. [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks

    [论文阅读笔记] metapath2vec: Scalable Representation Learning for Heterogeneous Networks 本文结构 解决问题 主要贡献 算法 ...

  8. [论文阅读笔记] node2vec Scalable Feature Learning for Networks

    [论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWal ...

  9. [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks

    [论文阅读笔记] Adversarial Learning on Heterogeneous Information Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问 ...

随机推荐

  1. 修改apache 2.4.6的MPM模式

    编辑配置文件/etc/httpd/conf.modules.d/00-mpm.conf #Select the MPM module which should be used by uncomment ...

  2. CSS3学习笔记1-选择器和新增属性

    前言:之前自学了一些关于CSS3的知识,在学习过程中也遇到过坑,不过总算磕磕绊绊的学习完了关于CSS3的相关知识,于是最近把之前的笔记和代码整理了一下,也算是一个对CSS3知识的回顾复习吧,也希望能够 ...

  3. C# 计算两个字符串的相似度

    我们在做数据系统的时候,经常会用到模糊搜索,但是,数据库提供的模糊搜索并不具备按照相关度进行排序的功能. 现在提供一个比较两个字符串相似度的方法. 通过计算出两个字符串的相似度,就可以通过Linq在内 ...

  4. 易语言5.6 精简破解版[Ctoo]

    说明:本易语言5.6破解版 加入了[E剑终情]大神制作的完美通杀补丁,本人还修复了静态编译的问题. 关于静态编译失效的问题,大家解压之后会看到易语言根目录有一个"易言语静态编译配置工具&qu ...

  5. 【ORM】--FluentNHibernate之基本映射详解

           最近在做项目的时候用到了NHibernate,使用它并不困难,但是很麻烦.如果我的数据库有几百张表如果想要一个个的映射岂不是很麻烦,所以这种情况下使用NHibernate就会很笨重,虽然 ...

  6. Struts2 XML配置详解

    struts官网下载地址:http://struts.apache.org/   1.    深入Struts2的配置文件 本部分主要介绍struts.xml的常用配置. 1.1.    包配置: S ...

  7. sql 时间(datetime)计算

    SELECT *FROM sc_sowu_orderreturnWHERE STATUS = '0'AND submit_time < DATE_ADD(now(), INTERVAL - 4 ...

  8. UIViewController中addChildViewController的作用

    当在一个ViewController中添加一个子ViewController时,UI部分可以直接通过addSubView的方法添加,例如: 在一个ViewControllerA中添加ViewContr ...

  9. php查看网页源代码的方法

    这篇文章主要介绍了php查看网页源代码的方法,涉及php读取网页文件的技巧,具有一定参考借鉴价值,需要的朋友可以参考下     本文实例讲述了php查看网页源代码的方法.分享给大家供大家参考.具体实现 ...

  10. Ionic打包过程下载Gradle失败的解决方法

      安卓应用现在很多都是基于gradle进行大包,ionic默认的打包命令 cordova  build --release  android 就是使用gradle进行打包,但同时ionic也支持in ...