大数据挖掘: FPGrowth初识--进行商品关联规则挖掘
@(hadoop)[Spark, MLlib, 数据挖掘, 关联规则, 算法]
〇、简介
经典的关联规则挖掘算法包括Apriori算法和FP-growth算法。Apriori算法多次扫描交易数据库,每次利用候选频繁集产生频繁集;而FP-growth则利用树形结构,无需产生候选频繁集而是直接得到频繁集,大大减少扫描交易数据库的次数,从而提高了算法的效率。但是apriori的算法扩展性较好,可以用于并行计算等领域。
关联规则的目的就是在一个数据集中找出项与项之间的关系,适用于在大数量的项集中发现关联共现的项。也被称为购物篮分析 (Market Basket analysis),因为“购物篮分析”很贴切的表达了适用该算法情景中的一个子集。
购物网站里你买了一个商品,旁边列出一系列买过该商品的人还买的其他商品,并且按置信度高低排序,一般会发现买手机的还会买充电器(买充电器的人不一定会买手机),买牙刷的还会买牙膏,这大概就是关联规则的用处。
基础环境:
CentOS-6.5
JDK-1.7
spark:spark-1.2.0+cdh5.3.6+379
一、Apriori算法
支持度(Support):定义为
$$supp(X) = \frac{包含X的记录数}{数据集记录总数}= P(X)=\frac{occur(X)}{count(D)}$$
置信度(Confidence): 定义为
$$ conf(X=>Y) = \frac{同时包含X和Y的记录数}{数据集中包含X的记录数}=P(Y|X)=\frac{P(X \cap Y)}{P(X)} = \frac{occur(X \cap Y)}{occur(X)}$$
FP-growth算法是Apriori算法的优化。
二、MLlib实现
spark-1.2.0 版本中Mliib的FPGrowthModel并没有generateAssociationRules(minConfidence)方法。因此要引用高版本的jar包,并在提交任务时指定才行。这是可以实现的。
Ⅰ、获取购买历史数据
下面共选取了6931条购买历史记录,作为关联规则挖掘的数据集。
1、产生源数据
我们可能需要使用类Mysql中的group_concat()
来产生源数据。在Hive中的替代方案是concat_ws()
。但若要连接的列是非string型,会报以下错误:Argument 2 of function CONCAT_WS must be "string or array<string>", but "array<bigint>" was found.
。使用以下hiveSQL可以避免此问题:
SELECT concat_ws(',', collect_set(cast(item_id AS String))) AS items FROM ods_angel_useritem tb GROUP BY tb.user_id;
得到item1,item2,item3
式数据结构。
数据结构如下所示:
731478,732986,733494
731353
732985,733487,730924
731138,731169
733850,733447
731509,730796,733487
731169,730924,731353
730900
733494,730900,731509
732991,732985,730796,731246,733850
2、构造JavaRDD
JavaRDD<List<String>> transactions = ...;
Ⅱ、过滤掉出现频率较低的数据
Java代码:
//设置频率(支持率)下限
FPGrowth fpg = new FPGrowth().setMinSupport(0.03).setNumPartitions(10);
FPGrowthModel<String> model = fpg.run(transactions);
List<FPGrowth.FreqItemset<String>> list_freqItem = model.freqItemsets().toJavaRDD().collect();
System.out.println("list_freqItem .size: " + list_freqItem .size());
for (FPGrowth.FreqItemset<String> itemset : list_freqItem) {
System.out.println("[" + itemset.javaItems() + "], " + itemset.freq());
}
结果:
[[734902]], 275
[[733480]], 1051
[[734385]], 268
[[733151]], 895
[[733850]], 878
[[733850, 733480]], 339
[[733152]], 266
[[733230]], 243
[[731246]], 500
[[731246, 733480]], 233
[[734888]], 231
[[734894]], 483
[[733487]], 467
[[740697]], 222
[[733831]], 221
[[734900]], 333
[[731353]], 220
[[731169]], 311
[[730924]], 308
[[732985]], 212
[[732994]], 208
[[730900]], 291
$$\frac{208}{6931}=0.03001>0.03$$,6931是交易的订单数量,即数据源总条数。
可见,商品732994正好高于支持率下限。
Ⅲ、过滤掉可信度过低的判断
Java代码:
double minConfidence = 0.3; //置信下限
List<AssociationRules.Rule<String>> list_rule = model.generateAssociationRules(minConfidence).toJavaRDD().collect();
System.out.println("list_rule.size: " + list_rule.size());
for (AssociationRules.Rule<String> rule : list_rule) {
System.out.println(
rule.javaAntecedent() + " => " + rule.javaConsequent() + ", " + rule.confidence());
}
结果:
[733480] => [733850], 0.3225499524262607
[731246] => [733480], 0.466
[733850] => [733480], 0.38610478359908884
- $P(733850|733480)=\frac{occur(733850 \cap 733480)}{occur(733480)}=\frac{339}{1051}=0.3225499524262607$
- $P(733480|731246)=\frac{occur(733480 \cap 731246)}{occur(731246)}=\frac{233}{500}=0.466$
- $P(733480|733850)=\frac{occur(733850 \cap 733480)}{occur(733850)}=\frac{339}{878}=0.38610478359908884$
以上表明,用户在购买商品733480后往往还会购买商品733480,可信度为0.3225499524262607;用户在购买商品731246后往往还会购买商品731246,可信度为0.466;用户在购买商品733850后往往还会购买商品733480,可信度为0.38610478359908884。
三、提交任务
Ⅰ、Spark On Standalone
spark-submit --master spark://node190:7077 --class com.angel.mlib.FPGrowthTest --jars lib/hbase-client-0.98.6-cdh5.3.6.jar,lib/hbase-common-0.98.6-cdh5.3.6.jar,lib/hbase-protocol-0.98.6-cdh5.3.6.jar,lib/hbase-server-0.98.6-cdh5.3.6.jar,lib/htrace-core-2.04.jar,lib/zookeeper.jar,lib/spark-mllib_2.10-1.5.2.jar,lib/spark-core_2.10-1.5.2.jar spark-test-1.0.jar
Ⅱ、Spark On Yarn
spark-submit --master yarn-client --class com.angel.mlib.FPGrowthTest --jars lib/hbase-client-0.98.6-cdh5.3.6.jar,lib/hbase-common-0.98.6-cdh5.3.6.jar,lib/hbase-protocol-0.98.6-cdh5.3.6.jar,lib/hbase-server-0.98.6-cdh5.3.6.jar,lib/htrace-core-2.04.jar,lib/zookeeper.jar,lib/spark-mllib_2.10-1.5.2.jar,lib/spark-core_2.10-1.5.2.jar spark-test-1.0.jar
四、FPGrowth算法在现实中的应用调优
在实际情况中,真实的业务数据处处都是噪声。活用数据,设计有业务含义的特征体系,是构造鲁棒模型的基础!
具体的解决办法,我们可以多算法并用,这些将在后续的aitanjupt文章中详述。
五、综上所述
也就是说,“购买了该宝贝的人32%还购买了某某商品”就是使用商品关联规则挖掘实现的;还有一些捆绑销售,例如牙膏和牙刷一起卖,尿布和啤酒放在一起卖。
关联规则挖掘算法不只是能用在商品销售,使用它我们可以挖掘出更多的关联关系,比如我们可以挖掘出,温度、天气、性别等等与心情之间是否有关联关系,这是非常有意义的。
关联规则挖掘算法应用场景非常庞大,遥记多年前做的手机用户关联分析,那时尚未用到关联规则挖掘算法,用的是自己编写的类join算法,现在看起来,关联规则挖掘算法是再适合不过的了。
上面是mllib下所有的算法。
某一数据挖掘算法可以做某种特定的分析,也可以跨界使用,还可以联合应用,重要的是理解其思想以灵活运用。
幸福是有一颗感恩的心,健康的身体,称心的工作,一位深爱你的人,一帮信赖的朋友!
祝大家小年快乐!
作者 @王安琪
http://www.cnblogs.com/wgp13x/
2016 年 02月 02日
大数据挖掘: FPGrowth初识--进行商品关联规则挖掘的更多相关文章
- apriori && fpgrowth:频繁模式与关联规则挖掘
已迁移到我新博客,阅读体验更佳apriori && fpgrowth:频繁模式与关联规则挖掘 详细代码我放在github上:click me 一.实验说明 1.1 任务描述 1.2 数 ...
- 数据挖掘系列(1)关联规则挖掘基本概念与Aprior算法
整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一 ...
- 数据挖掘进阶之关联规则挖掘FP-Growth算法
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规 ...
- 数据挖掘系列(4)使用weka做关联规则挖掘
前面几篇介绍了关联规则的一些基本概念和两个基本算法,但实际在商业应用中,写算法反而比较少,理解数据,把握数据,利用工具才是重要的,前面的基础篇是对算法的理解,这篇将介绍开源利用数据挖掘工具weka进行 ...
- 数据挖掘算法之-关联规则挖掘(Association Rule)
在数据挖掘的知识模式中,关联规则模式是比较重要的一种.关联规则的概念由Agrawal.Imielinski.Swami 提出,是数据中一种简单但很实用的规则.关联规则模式属于描述型模式,发现关联规则的 ...
- 数据挖掘算法之-关联规则挖掘(Association Rule)(购物篮分析)
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方 ...
- 数据挖掘系列(5)使用mahout做海量数据关联规则挖掘
上一篇介绍了用开源数据挖掘软件weka做关联规则挖掘,weka方便实用,但不能处理大数据集,因为内存放不下,给它再多的时间也是无用,因此需要进行分布式计算,mahout是一个基于hadoop的分布式数 ...
- 数据挖掘算法之关联规则挖掘(一)apriori算法
关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用 举个简单的例子 如当当网,在你浏览一本书的时候,可以在页面中看到一些套餐推荐,本书+有关系的书1+有关系的书2+... ...
- 数据挖掘系列(2)--关联规则FpGrowth算法
上一篇介绍了关联规则挖掘的一些基本概念和经典的Apriori算法,Aprori算法利用频繁集的两个特性,过滤了很多无关的集合,效率提高不少,但是我们发现Apriori算法是一个候选消除算法,每一次消除 ...
随机推荐
- viewpager和fragment预加载的解决
在使用Viewpager和fragment处理中会出现预加载的问题,最近看别人的代码,终于找到了一个很好的处理方法 能有效的解决预加载的问题,在fragment都继承一个重写setUserVisibl ...
- Light OJ 1031---Easy Game(区间DP)
题目链接 http://lightoj.com/volume_showproblem.php?problem=1031 Description You are playing a two player ...
- ahjesus 前端缓存原理 转载
LAMP缓存图 从图中我们可以看到网站缓存主要分为五部分 服务器缓存:主要是基于web反向代理的静态服务器nginx和squid,还有apache2的mod_proxy和mod_cache模 浏览器缓 ...
- 六个创建模式之原型模式(Prototype Pattern)
定义: 使用原型实例指定创建对象的种类,并通过拷贝这个原型的属性创建新的对象. 结构图: Prototype:抽象原型类,声明克隆方法的接口,并是所有原型类的公共父类.在Java中,Object类为该 ...
- 我所知道的Javascript
javascript到了今天,已经不再是我10多年前所认识的小脚本了.最近我也开始用javascript编写复杂的应用,所以觉得有必要将自己的javascript知识梳理一下.同大家一起分享javas ...
- Intro.js 网站演示
Intro.js 为您的网站和项目提供一步一步的.更好的介绍 使用简单 引入 js 和 css,然后在代码中加入步骤和介绍. 快速小巧 7 KB 的 JavaScript 和 3 KB CSS,就是全 ...
- Twproject Gantt – 开源的 JavaScript 甘特图组件
Twproject Gantt 是一款基于 jQuery 开发的甘特图组件,也可以创建其它图表,例如任务树(Task Trees).内置编辑.缩放和 CSS 皮肤等功能.更重要的是,它是免费开源的. ...
- 设置css通用字体
font-family: "Helvetica Neue","Arial","PingFang SC","Hiragino San ...
- Hybrid框架UI重构之路:五、前端那点事儿(HTML、CSS)
上文回顾 :Hybird框架UI重构之路:四.分而治之 这里讲述在开发的过程中,一些HTML.CSS的关键点. 单页模式的页面结构 在单页模式中,弱化HTML的概念,把HTML当成一个容器,BODY中 ...
- 由Vue引发的getter和setter思考
公司的新项目决定使用Vue.js来做,当我打印出Vue实例下的data对象里的属性时,发现了一个有趣的事情: 它的每个属性都有两个相对应的get和set方法,我觉的这是多此一举的,于是去网上查了查Vu ...