Description

Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multiplications:

x2 = x × x, x3 = x2 × x, x4 = x3 × x, …, x31 = x30 × x.

The operation of squaring can be appreciably shorten the sequence of multiplications. The following is a way to compute x31 with eight multiplications:

x2 = x × x, x3 = x2 × x, x6 = x3 × x3, x7 = x6 × x, x14 = x7 × x7, x15 = x14 × x, x30 = x15 × x15, x31 = x30 × x.

This is not the shortest sequence of multiplications to compute x31. There are many ways with only seven multiplications. The following is one of them:

x2 = x × x, x4 = x2 × x2, x8 = x4 × x4, x8 = x4 × x4, x10 = x8 × x2, x20 = x10 × x10, x30 = x20 × x10, x31 = x30 × x.

If division is also available, we can find a even shorter sequence of operations. It is possible to compute x31 with six operations (five multiplications and one division):

x2 = x × x, x4 = x2 × x2, x8 = x4 × x4, x16 = x8 × x8, x32 = x16 × x16, x31 = x32 ÷ x.

This is one of the most efficient ways to compute x31 if a division is as fast as a multiplication.

Your mission is to write a program to find the least number of operations to compute xn by multiplication and division starting with x for the given positive integer n. Products and quotients appearing in the sequence should be x to a positive integer’s power. In others words, x−, for example, should never appear.

Input

The input is a sequence of one or more lines each containing a single integer n. n is positive and less than or equal to . The end of the input is indicated by a zero.

Output

Your program should print the least total number of multiplications and divisions required to compute xn starting with x for the integer n. The numbers should be written each in a separate line without any superfluous characters such as leading or trailing spaces.

Sample Input


Sample Output


Source

求只用乘法和除法最快多少步可以求到x^n

其实答案最大13,但由于树的分支极为庞大在IDDFS的同时,我们还要加2个剪枝

1 如果当前序列最大值m*2^(dep-k)<n则减去这个分支

2 如果出现两个大于n的数则要减去分支。因为里面只有一个有用,我们一定可以通过另外更加短的路径得到答案

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int num;
int way[];
bool dfs(int n,int step){
if(num>step) return false;
if(way[num]==n) return true;
if(way[num]<<(step-num)<n) return false;//强剪枝
for(int i=;i<=num;i++){
num++;
way[num]=way[num-]+way[i];
if(way[num]<= && dfs(n,step)) return true; way[num]=way[num-]-way[i];
if(way[num]> && dfs(n,step)) return true;
num--;
}
return false;
}
int main()
{
int n;
while(scanf("%d",&n)==){
if(n==){
break;
} //迭代加深dfs
int i;
for(i=;;i++){
way[num=]=;
if(dfs(n,i))
break;
}
printf("%d\n",i); }
return ;
}

poj 3134 Power Calculus(迭代加深dfs+强剪枝)的更多相关文章

  1. POJ 3134 Power Calculus (迭代剪枝搜索)

    题目大意:略 题目里所有的运算都是幂运算,所以转化成指数的加减 由于搜索层数不会超过$2*log$层,所以用一个栈存储哪些数已经被组合出来了,不必暴力枚举哪些数已经被搜出来了 然后跑$iddfs$就行 ...

  2. POJ 2248 - Addition Chains - [迭代加深DFS]

    题目链接:http://bailian.openjudge.cn/practice/2248 题解: 迭代加深DFS. DFS思路:从目前 $x[1 \sim p]$ 中选取两个,作为一个新的值尝试放 ...

  3. POJ-3134-Power Calculus(迭代加深DFS)

    Description Starting with x and repeatedly multiplying by x, we can compute x31 with thirty multipli ...

  4. POJ 3134 Power Calculus ID-DFS +剪枝

    题意:给你个数n 让你求从x出发用乘除法最少多少步算出x^n. 思路: 一看数据范围 n<=1000 好了,,暴搜.. 但是 一开始写的辣鸡暴搜 样例只能过一半.. 大数据跑了10分钟才跑出来. ...

  5. POJ 3134 - Power Calculus

    迭代加深 //Twenty #include<cstdio> #include<cstdlib> #include<iostream> #include<al ...

  6. POJ 3134 - Power Calculus (IDDFS)

    题意:求仅仅用乘法和除法最快多少步能够求到x^n 思路:迭代加深搜索 //Accepted 164K 1094MS C++ 840B include<cstdio> #include< ...

  7. 迭代加深搜索POJ 3134 Power Calculus

    题意:输入正整数n(1<=n<=1000),问最少需要几次乘除法可以从x得到x的n次方,计算过程中x的指数要求是正的. 题解:这道题,他的结果是由1经过n次加减得到的,所以最先想到的就是暴 ...

  8. poj 3134 Power Calculus(IDA*)

    题目大意: 用最小的步数算出  x^n 思路: 直接枚举有限步数可以出现的所有情况. 然后加一个A*   就是如果这个数一直平方  所需要的步骤数都不能达到最优   就剪掉 #include < ...

  9. poj2286The Rotation Game(迭代加深dfs)

    链接 把迭代加深理解错了 自己写了半天也没写对 所谓迭代加深,就是在深度无上限的情况下,先预估一个深度(尽量小)进行搜索,如果没有找到解,再逐步放大深度搜索.这种方法虽然会导致重复的遍历 某些结点,但 ...

随机推荐

  1. 【剑指Offer学习】【面试题56:链表中环的入口结点】

    题目:一个链表中包括环.怎样找出环的入口结点? 解题思路 能够用两个指针来解决问题.先定义两个指针P1和P2指向链表的头结点.假设链表中环有n个结点,指针P1在链表上向前移动n步,然后两个指针以同样的 ...

  2. Linux中/etc/passwd文件与/etc/shadow文件解析.

    此文章转载自"慧可",用来学习. 1. /etc/passwd文件 1.1 /etc/passwd文件内容格式 用户名: 密码 : uid  : gid :用户描述:主目录:登陆s ...

  3. 基本SQL语句练习之SELECT

    一.SQL Plus连接sqlplus:以命令行方式连接数据库sqlplusw:以窗口登录方式连接数据库conn sys/password as sysdba;show userselect * fr ...

  4. qsort函数的简单实践

    #include<stdio.h>#include<stdlib.h>#include<time.h>//利用qsort函数对10个随机数进行排序int compa ...

  5. mybati的存储过程

    这里我就以的存储过程为例,大家一起学习一下,

  6. winform摄像头拍照 C#利用摄像头拍照

    这是我的第一篇博文,决定以后每个程序都要记录下来,方便以后查阅! 本人小菜一名,本程序也是查阅了网上各位前辈的博客和百度知道所整理出来的一个小程序. 第一次写有点不知道从何写起,先贴一张程序图吧. 程 ...

  7. 关于一个下载的源代码中的”*.vssscc“文件的问题

    今天下载了一份程序的源代码,老是提示我要连接源代码管理服务器,这个……你的账号密码我怎么知道,有木有.于是上网搜罗了一番找来了解决方案,在这里分享给可能出现同样问题的童鞋. 首先说明一下什么是vsss ...

  8. 1:环境安装与介绍:canopy

    <利用python进行数据分析>这本书推荐用的的环境为EPDFree版本,但实际现在大概已经抛弃它改用Canopy了,下面将介绍Canopy相关: 一:下载:https://store.e ...

  9. NHibernate之映射文件配置说明(转载2)

    六.鉴别器   在"一棵对象继承树对应一个表"的策略中,<discriminator>元素是必需的, 它定义了表的鉴别器字段. 鉴别器字段包含标志值,用于告知持久化层应 ...

  10. HDU4545+计算日期

    /* 计算过了D天后的日期 之前D天的日期 */ #include<stdio.h> int judge_year( int year ){ if( (year%4==0&& ...