kaggle之旧金山犯罪
特点:
- 离散特征
- 离散特征二值化处理
数据概览
import pandas as pd
import numpy as np
# 载入数据
train = pd.read_csv('~/kaggle/dataset/San_Francisco_Crime_Classification/train.csv', parse_dates = ['Dates'])
test = pd.read_csv('~/kaggle/dataset/San_Francisco_Crime_Classification/test.csv', parse_dates = ['Dates'])
预览训练集
print train.head(10)
Dates Category Descript \
0 2015-05-13 23:53:00 WARRANTS WARRANT ARREST
1 2015-05-13 23:53:00 OTHER OFFENSES TRAFFIC VIOLATION ARREST
2 2015-05-13 23:33:00 OTHER OFFENSES TRAFFIC VIOLATION ARREST
3 2015-05-13 23:30:00 LARCENY/THEFT GRAND THEFT FROM LOCKED AUTO
4 2015-05-13 23:30:00 LARCENY/THEFT GRAND THEFT FROM LOCKED AUTO
5 2015-05-13 23:30:00 LARCENY/THEFT GRAND THEFT FROM UNLOCKED AUTO
6 2015-05-13 23:30:00 VEHICLE THEFT STOLEN AUTOMOBILE
7 2015-05-13 23:30:00 VEHICLE THEFT STOLEN AUTOMOBILE
8 2015-05-13 23:00:00 LARCENY/THEFT GRAND THEFT FROM LOCKED AUTO
9 2015-05-13 23:00:00 LARCENY/THEFT GRAND THEFT FROM LOCKED AUTO
DayOfWeek PdDistrict Resolution Address \
0 Wednesday NORTHERN ARREST, BOOKED OAK ST / LAGUNA ST
1 Wednesday NORTHERN ARREST, BOOKED OAK ST / LAGUNA ST
2 Wednesday NORTHERN ARREST, BOOKED VANNESS AV / GREENWICH ST
3 Wednesday NORTHERN NONE 1500 Block of LOMBARD ST
4 Wednesday PARK NONE 100 Block of BRODERICK ST
5 Wednesday INGLESIDE NONE 0 Block of TEDDY AV
6 Wednesday INGLESIDE NONE AVALON AV / PERU AV
7 Wednesday BAYVIEW NONE KIRKWOOD AV / DONAHUE ST
8 Wednesday RICHMOND NONE 600 Block of 47TH AV
9 Wednesday CENTRAL NONE JEFFERSON ST / LEAVENWORTH ST
X Y
0 -122.425892 37.774599
1 -122.425892 37.774599
2 -122.424363 37.800414
3 -122.426995 37.800873
4 -122.438738 37.771541
5 -122.403252 37.713431
6 -122.423327 37.725138
7 -122.371274 37.727564
8 -122.508194 37.776601
9 -122.419088 37.807802
预览测试集合
print test.head(10)
Id Dates DayOfWeek PdDistrict Address \
0 0 2015-05-10 23:59:00 Sunday BAYVIEW 2000 Block of THOMAS AV
1 1 2015-05-10 23:51:00 Sunday BAYVIEW 3RD ST / REVERE AV
2 2 2015-05-10 23:50:00 Sunday NORTHERN 2000 Block of GOUGH ST
3 3 2015-05-10 23:45:00 Sunday INGLESIDE 4700 Block of MISSION ST
4 4 2015-05-10 23:45:00 Sunday INGLESIDE 4700 Block of MISSION ST
5 5 2015-05-10 23:40:00 Sunday TARAVAL BROAD ST / CAPITOL AV
6 6 2015-05-10 23:30:00 Sunday INGLESIDE 100 Block of CHENERY ST
7 7 2015-05-10 23:30:00 Sunday INGLESIDE 200 Block of BANKS ST
8 8 2015-05-10 23:10:00 Sunday MISSION 2900 Block of 16TH ST
9 9 2015-05-10 23:10:00 Sunday CENTRAL TAYLOR ST / GREEN ST
X Y
0 -122.399588 37.735051
1 -122.391523 37.732432
2 -122.426002 37.792212
3 -122.437394 37.721412
4 -122.437394 37.721412
5 -122.459024 37.713172
6 -122.425616 37.739351
7 -122.412652 37.739750
8 -122.418700 37.765165
9 -122.413935 37.798886
我们看到训练集和测试集都有Dates、DayOfWeek、PdDistrict三个特征,我们先从这三个特征入手。训练集中的Category是我们的预测目标,我们先对其进行编码,这里用到sklearn的LabelEncoder(),示例如下:
from sklearn import preprocessing
label = preprocessing.LabelEncoder()
label.fit([1, 2, 2, 6])
print label.transform([1, 1, 2, 6])
[0 0 1 2]
接下来我们对类别进行编码:
crime = label.fit_transform(train.Category)
对于离散化的特征,有一种常用的特征处理方式是二值化处理,pandas中有get_dummies()函数,函数示例如下:
pd.get_dummies(pd.Series(list('abca')))
a | b | c | |
---|---|---|---|
0 | 1.0 | 0.0 | 0.0 |
1 | 0.0 | 1.0 | 0.0 |
2 | 0.0 | 0.0 | 1.0 |
3 | 1.0 | 0.0 | 0.0 |
接下来对Dates、DayOfWeek、PdDistrict三个特征进行二值化处理:
days = pd.get_dummies(train.DayOfWeek)
district = pd.get_dummies(train.PdDistrict)
hour = pd.get_dummies(train.Dates.dt.hour)
接下来重新组合训练集,并把类别附加上:
train_data = pd.concat([days, district, hour], axis=1)
train_data['crime'] = crime
针对测试集做同样的处理:
days = pd.get_dummies(test.DayOfWeek)
district = pd.get_dummies(test.PdDistrict)
hour = pd.get_dummies(test.Dates.dt.hour)
test_data = pd.concat([days, district, hour], axis=1)
预览新的训练集和测试集:
print train_data.head(10)
print test_data.head(10)
Friday Monday Saturday Sunday Thursday Tuesday Wednesday BAYVIEW \
0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
1 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0
8 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
CENTRAL INGLESIDE ... 15 16 17 18 19 20 21 22 23 \
0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
1 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
2 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
3 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
4 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
5 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
6 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
7 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
8 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
9 1.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
crime
0 37
1 21
2 21
3 16
4 16
5 16
6 36
7 36
8 16
9 16
[10 rows x 42 columns]
Friday Monday Saturday Sunday Thursday Tuesday Wednesday BAYVIEW \
0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
1 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0
2 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
CENTRAL INGLESIDE ... 14 15 16 17 18 19 20 21 22 23
0 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
1 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
2 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
3 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
4 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
5 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
6 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
7 0.0 1.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
8 0.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
9 1.0 0.0 ... 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
[10 rows x 41 columns]
分割训练集和验证集(70%训练,30%验证)准备建模:
from sklearn.cross_validation import train_test_split
training, validation = train_test_split(train_data, train_size=0.6)
贝叶斯训练
from sklearn.metrics import log_loss
from sklearn.naive_bayes import BernoulliNB
model = BernoulliNB()
feature_list = training.columns.tolist()
feature_list = feature_list[:len(feature_list) - 1]
print '选取的特征列:', feature_list
model.fit(training[feature_list], training['crime'])
predicted = np.array(model.predict_proba(validation[feature_list]))
print "朴素贝叶斯log损失为 %f" % (log_loss(validation['crime'], predicted))
选取的特征列: ['Friday', 'Monday', 'Saturday', 'Sunday', 'Thursday', 'Tuesday', 'Wednesday', 'BAYVIEW', 'CENTRAL', 'INGLESIDE', 'MISSION', 'NORTHERN', 'PARK', 'RICHMOND', 'SOUTHERN', 'TARAVAL', 'TENDERLOIN', 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]
朴素贝叶斯log损失为 2.581561
逻辑回归
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(C=0.1)
model.fit(training[feature_list], training['crime'])
predicted = np.array(model.predict_proba(validation[feature_list]))
print "逻辑回归log损失为 %f" %(log_loss(validation['crime'], predicted))
逻辑回归log损失为 2.580102
在测试集上运行:
test_predicted = np.array(model.predict_proba(test_data[feature_list]))
保存结果:
col_names = np.sort(train['Category'].unique())
print col_names
result = pd.DataFrame(data=test_predicted, columns=col_names)
result['Id'] = test['Id'].astype(int)
result.to_csv('output.csv', index=False)
['ARSON' 'ASSAULT' 'BAD CHECKS' 'BRIBERY' 'BURGLARY' 'DISORDERLY CONDUCT'
'DRIVING UNDER THE INFLUENCE' 'DRUG/NARCOTIC' 'DRUNKENNESS' 'EMBEZZLEMENT'
'EXTORTION' 'FAMILY OFFENSES' 'FORGERY/COUNTERFEITING' 'FRAUD' 'GAMBLING'
'KIDNAPPING' 'LARCENY/THEFT' 'LIQUOR LAWS' 'LOITERING' 'MISSING PERSON'
'NON-CRIMINAL' 'OTHER OFFENSES' 'PORNOGRAPHY/OBSCENE MAT' 'PROSTITUTION'
'RECOVERED VEHICLE' 'ROBBERY' 'RUNAWAY' 'SECONDARY CODES'
'SEX OFFENSES FORCIBLE' 'SEX OFFENSES NON FORCIBLE' 'STOLEN PROPERTY'
'SUICIDE' 'SUSPICIOUS OCC' 'TREA' 'TRESPASS' 'VANDALISM' 'VEHICLE THEFT'
'WARRANTS' 'WEAPON LAWS']
kaggle之旧金山犯罪的更多相关文章
- 贝叶斯--旧金山犯罪分类预测和电影评价好坏 demo
来源引用:https://blog.csdn.net/han_xiaoyang/article/details/50629608 1.引言 贝叶斯是经典的机器学习算法,朴素贝叶斯经常运用于机器学习的案 ...
- Kaggle比赛:从何着手?
介绍 参加Kaggle比赛,我必须有哪些技能呢? 你有没有面对过这样的问题?最少在我大二的时候,我有过.过去我仅仅想象Kaggle比赛的困难度,我就感觉害怕.这种恐惧跟我怕水的感觉相似.怕水,让我无法 ...
- NLP系列(4)_朴素贝叶斯实战与进阶
作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:http://blog.csdn.net/han_xiaoyang/article/details/50629608 htt ...
- 法律AI数据及应用
本文简单列举了法律AI目前的应用,数据集,研究方向. 历史 1970年,Buchanan和Headrick发表文章"关于人工智能和法律推理的一些猜测",讨论了对法律研究和推理进行建 ...
- NLP系列(4)_朴素贝叶斯实战与进阶(转)
http://blog.csdn.net/han_xiaoyang/article/details/50629608 作者: 寒小阳 && 龙心尘 时间:2016年2月. 出处:htt ...
- 100天搞定机器学习|Day15 朴素贝叶斯
Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英 ...
- 托马斯·贝叶斯 (Thomas Bayes)
朴素贝叶斯 Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫: ...
- 项目实战-使用PySpark处理文本多分类问题
原文链接:https://cloud.tencent.com/developer/article/1096712 在大神创作的基础上,学习了一些新知识,并加以注释. TARGET:将旧金山犯罪记录(S ...
- kaggle信用卡欺诈看异常检测算法——无监督的方法包括: 基于统计的技术,如BACON *离群检测 多变量异常值检测 基于聚类的技术;监督方法: 神经网络 SVM 逻辑回归
使用google翻译自:https://software.seek.intel.com/dealing-with-outliers 数据分析中的一项具有挑战性但非常重要的任务是处理异常值.我们通常将异 ...
随机推荐
- mac下显示隐藏文件
一.在终端中 ls -a就可以查看隐藏文件. 显示和隐藏的命令例如以下: 显示:defaults write com.apple.finder AppleShowAllFiles -bool true ...
- table-cell完成左侧定宽,右侧定宽及左右定宽等布局
使用table-cell完成以下几种布局(ie8及以上兼容) 1.左侧定宽-右侧自适应 .left{ width: 300px; height: 500px; border: 1px solid; f ...
- js 分割循环
var str ='1,2,3'; var arr = str.split(","); var array1 =[]; var array2 =[]; for(i=0,l=arr. ...
- 1.jdk、Tomcat、solr的安装和配置
1.jdk安装和配置 1)根据电脑类型,到官网下载相应的jdk版本 2)双击jdk-8u5-windows-x64.exe安装包,一直点下一步就可以了,注意记住jdk和jre的安装目录. 3)环境变量 ...
- 数据结构c++语言描述——最大堆(MaxHeap)
一.最大堆的插入 图9-3a 给出了一个具有5个元素的最大堆.由于堆是完全二叉树,当加入一个元素形成6元素堆时,其结构必如9-3b 所示.如果插入元素的值为1,则插入后该元素成为2的左孩子,相反,若新 ...
- MVC 数据列表显示插件大全
Jgrid 官网示例: http://www.trirand.net/demo/aspnet/mvc/jqgrid/ Code Project示例: http://www.codeproject.co ...
- MyEclipse安装xfire插件
xfire因为过时,MyEclipse已经将其支,如果想用只能手动添加了. 安装步骤: 1.点击help┈┈┈→install from site出现下图 在第一栏里,输出http://dist.co ...
- PHP--变量部分知识点
PHP全局变量 PHP全局变量作用域不同与C,在函数内部不可以使用全局变量,要在函数内部使用全局变量需要,global $var或者使用超全局变量数组$GLOBALS['var']. 静态变量 PHP ...
- SQL SERVER中如何格式化日期
1. SELECT convert(varchar, getdate(), 100) -- mon dd yyyy hh:mmAM (or PM) -- Oct 2 2008 11:01AM ...
- Kindeditor上传图片到七牛云存储插件(PHP版)
由于工作需要,要使用第三方存储作为图床,发现七牛云挺不错,又可以免费使用10G的空间,决定先试试. 项目中使用的是Kindeditor作为网页编辑器的,七牛云的插件里没有现成的Kindeditor的插 ...