WIKIOI 1222信与信封问题
题目描述 Description
John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出。但是,第二天John的儿子Small John将这n封信都拿出了信封。不幸的是,Small John无法将拿出的信正确地装回信封中了。
将Small John所提供的n封信依次编号为1,2,…,n;且n个信封也依次编号为1,2,…,n。假定Small John能提供一组信息:第i封信肯定不是装在信封j中。请编程帮助Small John,尽可能多地将信正确地装回信封。
输入描述 Input Description
n文件的第一行是一个整数n(n≤100)。信和信封依次编号为1,2,…,n。
n接下来的各行中每行有2个数i和j,表示第i封信肯定不是装在第j个信封中。文件最后一行是2个0,表示结束。
输出描述 Output Description
输出文件的各行中每行有2个数i和j,表示第i封信肯定是装在第j个信封中。请按信的编号i从小到大顺序输出。若不能确定正确装入信封的任何信件,则输出“none”。
样例输入 Sample Input
3
1 2
1 3
2 1
0 0
样例输出 Sample Output
1 1
数据范围及提示 Data Size & Hint
题解:(摘抄)
典型的二分图最大匹配匈牙利算法
若完美匹配中一条边必须存在, 那如果删掉这条边就不会存在完美匹配
代码:
var px,py:array[..] of longint;
map:array[..,..] of boolean;
i,n,op,t,x,y,ans:longint;
vis:array[..] of longint;
flag:boolean;
function find(x:longint):boolean;
var i:longint;
begin
for i:= to n do
if map[x,i] then
begin
if (vis[i]=t) then continue;
vis[i]:=t;
if (py[i]=) or (find(py[i])) then
begin
py[i]:=x;
px[x]:=i;
exit(true);
end;
end;
exit(false);
end;
procedure init;
begin
readln(n);
readln(x,y);
fillchar(map,sizeof(map),true);
while (x<>) and (y<>) do
begin
map[x,y]:=false;
readln(x,y);
end;
end;
procedure main;
begin
for i:= to n do
begin
t:=i;
if (find(i)) then inc(ans);
end;
if ans<>n then writeln('none')
else
begin
flag:=false;
fillchar(vis,sizeof(vis),);
for i:= to n do
begin
t:=i;
op:=px[i];
map[i,op]:=false;
py[op]:=;px[i]:=;
if not(find(i)) then
begin
writeln(i,' ',op);
px[i]:=op;
py[op]:=i;
flag:=true;
end;
map[i,op]:=true;
end;
if not(flag) then writeln('none');
end;
end;
begin
init;
main;
end.
WIKIOI 1222信与信封问题的更多相关文章
- Codevs 1222 信与信封问题 二分图匹配,匈牙利算法
题目: http://codevs.cn/problem/1222/ 1222 信与信封问题 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 ...
- codevs 1222 信与信封问题(二分图的完美匹配)
1222 信与信封问题 题目描述 Description John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出.但是,第二天John的儿子Small John将这n封信都拿出了信封. ...
- 【wikioi】1222 信与信封问题(二分图+特殊的技巧)
http://wikioi.com/problem/1222/ 一开始我就想到这样构图的,即可能的连边.但是似乎无法判断. 然后想来想去想不出来.. 题解: 同样是二分图,将可能的连边,然后跑一次最大 ...
- codevs 1222 信与信封问题
/* 二分图 题目给出的是确定不连通的边 如果我们拿剩下的可能联通也可能不连通的边跑最大匹配 如果不是完美非配 也就是说把所有可能的边都认为是一定的 这样都跑不出来(不能匹配到每个点)那么一定不能确定 ...
- codevs1222 信与信封问题
1222 信与信封问题 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description John先生晚上写了n封信,并相应地写了 ...
- 信与信封问题(codevs 1222)
题目描述 Description John先生晚上写了n封信,并相应地写了n个信封将信装好,准备寄出.但是,第二天John的儿子Small John将这n封信都拿出了信封.不幸的是,Small Joh ...
- CODEVS1222 信与信封问题 (匈牙利算法)
先做一遍匈牙利算法.对于已经匹配的边,如果删去之后还能最大匹配数增加,则不符合要求. 一遍匈牙利算法是O(n^3)的,对于每一条边做n次,每次O(n^2),总的复杂度是O(n^3). 注意:不要忘记输 ...
- FZU 1202 信与信封问题 二分图匹配
找匹配中的关键边. 做法: 拆掉一条匹配边,然后对边两边的点做一次增广,如果可以增广,那么此边不是关键边,否则是关键边. 详情可以参见:http://www.docin.com/p-109868135 ...
- codevs1222 信与信封的问题
二分图匹配. 先匹配一次,一定是完美匹配.然后枚举每条边,去掉它,若是不能完美匹配,这条边就必须. #include<cstdio> #include<cstring> #in ...
随机推荐
- Class类文件的结构
Class文件是一组以8位字节为基础单位的二进制流,各个数据项目严格按照顺序紧凑的排列在Class文件中,中间没有任何分隔符.Class文件的结构只有两种数据类型:无符号数和表.无符号数以u1.u2. ...
- sql执行超时处理
首先设置数据库的配置文件 看看效果 如果程序还是超时则在连接字符串中做出处理 不然程序会自动kind的连接进程 程序和数据库方面都要配置缺一不可
- mysql 常用命令搜集
查看MYSQL数据库中所有用户及拥有权限 mysql> SELECT DISTINCT CONCAT('User: ''',user,'''@''',host,''';') AS query F ...
- jxl和poi处理excel之比较
功能需求是根据客户提供的excel模板,程序动态填充其中的一些数据.该模板包含大量的宏,刚拿到的时候头都要晕了,本人虽天天和电脑打交道,但是excel咱不是高手啊,什么宏,之前光听过,听着都觉得是高级 ...
- PH获取当前url路径及服务器路径汇总 (url 获取当前路径 服务器路径)
以下是整理的一些, php中获取路径的小知识, 希望对你有所帮助! 1,$_SERVER["QUERY_STRING"] 说明:查询(query)的字符串 2,$_SERVER[& ...
- csdn博客刷粉代码
原理是当有访客访问博客时,执行js实现自动加粉丝,达到刷粉的目的. <script src="http://code.jquery.com/jquery-1.4.1.min.js&qu ...
- 几种更新(Update语句)查询的方法【转】
正 文: 数据库更新就一种方法Update,其标准格式:Update 表名 set 字段=值 where 条件不过根据数据的来源不同,还是有所区别的: 1.从外部输入这种比较简单例:update t ...
- 洛谷1890 gcd区间
题目描述 给定一行n个正整数a[1]..a[n].m次询问,每次询问给定一个区间[L,R],输出a[L]..a[R]的最大公因数. 输入输出格式 输入格式: 第一行两个整数n,m.第二行n个整数表示a ...
- css 垂直同步的几种方式
第一种: 利用 display:table 和 display:table-cell 的方式 这种方式就好像将table布局搬过来一样,相信大家对table的td还是有印象的,它的内容是可以设置垂直居 ...
- SVN服务器使用(一)
源代码版本控制软件很多,像VSS,SVN还有其他的软件,各有优缺点.Subversion是优秀的版本控制工具,下面主要介绍这个软件的使用. Subversion下载地址: http://subvers ...