Problem Description

我知道部分同学最近在看中国剩余定理,就这个定理本身,还是比较简单的:

假设m1,m2,…,mk两两互素,则下面同余方程组:

x≡a1(mod m1)

x≡a2(mod m2)



x≡ak(mod mk)

在0<=<m1m2…mk内有唯一解。

记Mi=M/mi(1<=i<=k),因为(Mi,mi)=1,故有二个整数pi,qi满足Mipi+miqi=1,如果记ei=Mi/pi,那么会有:

ei≡0(mod mj),j!=i

ei≡1(mod mj),j=i

很显然,e1a1+e2a2+…+ekak就是方程组的一个解,这个解加减M的整数倍后就可以得到最小非负整数解。

这就是中国剩余定理及其求解过程。

现在有一个问题是这样的:

一个正整数N除以M1余(M1- a),除以M2余(M2-a), 除以M3余(M3-a),总之, 除以MI余(MI-a),其中(a<Mi<100i=1,2,…I),求满足条件的最小的数。

Input

输入数据包含多组测试实例,每个实例的第一行是两个整数I(1<I<10)和a,其中,I表示M的个数,a的含义如上所述,紧接着的一行是I个整数M1,M1...MI,I=0并且a=0结束输入,不处理。

Output

对于每个测试实例,请在一行内输出满足条件的最小的数。每个实例的输出占一行。

Sample Input

2 1

2 3

0 0

Sample Output

5

/******************************

这题太坑了,题目写的是  Chinese remainder theorem,却明明是最小公倍数。。。

分析:M%M1 = M1-a,M%M2 = M2-a,M%M3 = M3-a,……,M%Mi = Mi-a

即:(M+a) %M1 = 0,(M+a) %M2 = 0,(M+a) %M3 = 0,……,(M+a) %Mi = 0,

即: M+a  是M1,M2,M3,……,Mi的一个最小公倍数。。

好了,求最小公倍数吧!!

//  将hdu 1019 的代码稍微改了一下,注意要使用__int64,int不行。。。

****************************************/

Code:

#include <iostream>
#include<string.h>
using namespace std;
__int64 gcd(__int64 a,__int64 b)//求最大公约数
{
__int64 temp;
if(a<b)
{
temp = a;a = b;b = temp;
}
return (b==0)?a:gcd(b,a%b);
}
__int64 LCM(__int64 a,__int64 b)//求最小公倍数
{
return a/gcd(a,b)*b;
}
int main()
{
__int64 n,ans,x,a;
while(cin>>n>>a&&n&&a)
{
//memset(a,0,sizeof(a));
ans = 1;
cin>>x;
ans = LCM(ans,x);
for(int i = 0;i<n-1;i++)
{
cin>>x;
ans = LCM(ans,x);
}
ans-=a;
cout<<ans<<endl;
} return 0;
}

hdu 1788 Chinese remainder theorem again(最小公倍数)的更多相关文章

  1. HDU 1788 Chinese remainder theorem again

    题目链接 题意 : 中文题不详述. 思路 : 由N%Mi=(Mi-a)可得(N+a)%Mi=0;要取最小的N即找Mi的最小公倍数即可. #include <cstdio> #include ...

  2. HDU——1788 Chinese remainder theorem again

    再来一发水体,是为了照应上一发水题. 再次也特别说明一下,白书上的中国剩余定理的模板不靠谱. 老子刚刚用柏树上的模板交上去,简直wa出翔啊. 下面隆重推荐安叔版同余方程组的求解方法. 反正这个版本十分 ...

  3. HDU 1788 Chinese remainder theorem again 中国剩余定理

    题意: 给定n,AA 以下n个数m1,m2···mn 则有n条方程 res % m1 = m1-AA res % m2 = m2-AA 问res的最小值 直接上剩余定理,嘿嘿 #include< ...

  4. DHU 1788 Chinese remainder theorem again 中国剩余定理

    Chinese remainder theorem again Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 ...

  5. Chinese remainder theorem again(中国剩余定理)

    C - Chinese remainder theorem again Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:% ...

  6. HDU1788 Chinese remainder theorem again【中国剩余定理】

    题目链接: pid=1788">http://acm.hdu.edu.cn/showproblem.php?pid=1788 题目大意: 题眼下边的描写叙述是多余的... 一个正整N除 ...

  7. 中国剩余定理(Chinese Remainder Theorem)

    我理解的中国剩余定理的含义是:给定一个数除以一系列互素的数${p_1}, \cdots ,{p_n}$的余数,那么这个数除以这组素数之积($N = {p_1} \times  \cdots  \tim ...

  8. 【数论】【中国剩余定理】【LCM】hdu1788 Chinese remainder theorem again

    根据题目容易得到N%Mi=Mi-a. 那么可得N%Mi+a=Mi. 两侧同时对Mi取余,可得(N+a)%Mi=0. 将N+a看成一个变量,就可以把原问题转化成求Mi的LCM,最后减去a即可. #inc ...

  9. Chinese remainder theorem

    https://en.wikipedia.org/wiki/Chinese_remainder_theorem http://planetmath.org/ChineseRemainderTheore ...

随机推荐

  1. Linux Mono Asp.net 部署方案

    1.Jexus 国内的 官网:http://www.jexus.org 2.Apache 官网:http://mono-project.com/Mod_mono 3.Nginx 官网:http://m ...

  2. In Java, what is the default location for newly created files?

    If the current directory of the application. If e.g. you create a File by using new FileOutputStream ...

  3. BZOJ 2933([Poi1999]地图-区间Dp)

    2933: [Poi1999]地图 Time Limit: 1 Sec   Memory Limit: 128 MB Submit: 7   Solved: 7 [ Submit][ Status] ...

  4. 395. Coins in a Line II

    最后更新 这个题做得也不好,dp[n]尝试写了几下,不太对. 应该是类似于gem theory的题. 当只有1个硬币剩下的时候直接拿走,不BB. 剩俩的时候也都拿了.. dp[n]表示剩下多少个硬币. ...

  5. VirtualBox检查更新失败解决办法

    5.0————>5.1的更新: 1.VirtualBox5.0检查更新失败 2.官网下载最新版本 3.安装最新版本到原来旧版本的路径下 关键的地方来了:我可是担心坏了,怕安装新版本,会破坏原来已 ...

  6. Spring各种注解标签作用详解

    @Autowired和@Resource等注解是将Spring容器中的bean注入到属性,而@Component等注解是将bean放入Spring容器中管理. @Autowired spring2.1 ...

  7. 泛型类、Map集合

    ————泛型: JDK1.5之后出现的新特性:用于解决安全问题,是一个类型安全机制. 好处: 1.将运行时期出现的问题ClassCastException ,转移到了编译时期,方便于程序员解决问题,让 ...

  8. Cocos2d 3.0继承自Sprite的类在addChild后出现故障

    当继承自Sprite的类被addChild到其它的Node里后出现例如以下图问题,说明没有调用父类Sprite::init()的方法.由于父类Sprite里的_textureAtlas须要初始化为nu ...

  9. C和指针 (pointers on C)——第四章:语句(上)

    第四章--语句(上) 总结总结!!! C没有布尔类型,所以在一些逻辑推断时候必须用整型表达式,零值为假,非零值为真. for比while把控制循环的表达式收集起来放在一个地方,以便寻找. do语句比w ...

  10. Qt OpenGL三维绘图

     简介 OpenGL是为三维绘图提供的标准应用编程接口. OpenGL处理的仅仅是三维绘图方面,而很少或是根本不提供图形用户界面编程方面的支持.OpenGL*应用程序的用户界面必须由其它工具包创建,比 ...