Codeforces 544E Remembering Strings 状压dp
题意:
给定n个长度均为m的字符串
以下n行给出字符串
以下n*m的矩阵表示把相应的字母改动成其它字母的花费。
问:
对于一个字符串,若它是easy to remembering 当 它存在一个字母。使得这个字母在这一列是独一无二的。
要使得n个字符串都是easy to remembering 的最小花费。
第一个例子是把第一列的4个a中3个a改动成别的字母。所以花费为3.
思路:
显然是个状压dp,但须要一点转化。
首先得到一个结论:
对于某一列,设这一列的字母是 a,a,b,b,a,d,c···
随意改动某种字母,都能使得包含该种字母的字符串变成unique
instance: 把全部的a字母都改动为别的字母,一定能使得改动后的字母与同列的其它字母不反复。
由于最多仅仅有20个字符串,也就是改动后的字母种类至多仅仅有20种。
然后状压已经easy to remembering的字符串的最小花费。
dp[i] 表示已经easy to remembering 的字符串状态为i时的最小花费。
两个转移:
1、直接改动字母
2、把这一列中全部与这个字母同样的字母都改动成别的字母。
当然能够剩下一个,剩下花费最大的那个就可以。
cost[i][j] 就表示除了花费最大的那个 同列中与str[i][j]字母同样的花费和。
bit[i][j] 表示哪些字符串 在第j列 与 a[i][j] 字母同样。
#include <iostream>
#include <string>
#include <vector>
#include <cstring>
#include <cstdio>
#include <map>
#include <queue>
#include <algorithm>
#include <stack>
#include <cstring>
#include <cmath>
#include <set>
#include <vector>
using namespace std;
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x <0) {
putchar('-');
x = -x;
}
if (x>9) pt(x / 10);
putchar(x % 10 + '0');
}
typedef long long ll;
typedef pair<ll, ll> pii;
const int inf = 1e9;
const int N = 21;
int n, m;
char s[N][N];
int a[N][N];
int dp[1 << N];
int bit[N][N], cost[N][N];
int main() {
rd(n); rd(m);
for (int i = 0; i < n; i++)scanf("%s", s[i]);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)rd(a[i][j]);
for (int i = 0; i < n; i++)
for (int j = 0; j < m; j++)
{
int ans = 0, maxn = -inf;
for (int k = 0; k < n; k++)
if (s[i][j] == s[k][j])
{
ans += a[k][j];
maxn = max(maxn, a[k][j]);
bit[i][j] |= 1 << k;
}
ans -= maxn;
cost[i][j] = ans;
}
for (int i = 1; i < (1 << n); i++)dp[i] = inf;
dp[0] = 0;
for (int i = 0; i < (1 << n); i++)
{
for (int j = 0; j < n; j++)
if ((i & (1 << j)) == 0)
{
for (int k = 0; k < m; k++)
{
dp[i | (1 << j)] = min(dp[i | (1 << j)], dp[i] + a[j][k]);
dp[i | bit[j][k]] = min(dp[i | bit[j][k]], dp[i] + cost[j][k]);
}
}
}
pt(dp[(1 << n) - 1]);
return 0;
}
Codeforces 544E Remembering Strings 状压dp的更多相关文章
- Codeforces Round #302 (Div. 1) C - Remembering Strings 状压dp
C - Remembering Strings 思路:最关键的一点是字符的个数比串的个数多. 然后就能状压啦. #include<bits/stdc++.h> #define LL lon ...
- CF543C Remembering Strings 状压dp
Code: #include <cstdio> #include <algorithm> #include <cstring> #define setIO(s) f ...
- codeforces Diagrams & Tableaux1 (状压DP)
http://codeforces.com/gym/100405 D题 题在pdf里 codeforces.com/gym/100405/attachments/download/2331/20132 ...
- Codeforces 917C - Pollywog(状压 dp+矩阵优化)
UPD 2021.4.9:修了个 typo,为啥写题解老出现 typo 啊( Codeforces 题目传送门 & 洛谷题目传送门 这是一道 *2900 的 D1C,不过还是被我想出来了 u1 ...
- Codeforces 79D - Password(状压 dp+差分转化)
Codeforces 题目传送门 & 洛谷题目传送门 一个远古场的 *2800,在现在看来大概 *2600 左右罢( 不过我写这篇题解的原因大概是因为这题教会了我一个套路罢( 首先注意到每次翻 ...
- codeforces 21D. Traveling Graph 状压dp
题目链接 题目大意: 给一个无向图, n个点m条边, 每条边有权值, 问你从1出发, 每条边至少走一次, 最终回到点1. 所走的距离最短是多少. 如果这个图是一个欧拉回路, 即所有点的度数为偶数. 那 ...
- Codeforces 895C - Square Subsets 状压DP
题意: 给了n个数,要求有几个子集使子集中元素的和为一个数的平方. 题解: 因为每个数都可以分解为质数的乘积,所有的数都小于70,所以在小于70的数中一共只有19个质数.可以使用状压DP,每一位上0表 ...
- CodeForces 327E Axis Walking(状压DP+卡常技巧)
Iahub wants to meet his girlfriend Iahubina. They both live in Ox axis (the horizontal axis). Iahub ...
- Codeforces ----- Kefa and Dishes [状压dp]
题目传送门:580D 题目大意:给你n道菜以及每道菜一个权值,k个条件,即第y道菜在第x道后马上吃有z的附加值,求从中取m道菜的最大权值 看到这道题,我们会想到去枚举,但是很显然这是会超时的,再一看数 ...
随机推荐
- LA 6474 Drop Zone (最小割)
题目链接 要添最少的挡板使所有的'D'不存在到达网格外的路径. 以每个格子向四个方向中可以到达的格子连容量为1的边, 从源点向所有'D' 连容量为4的边,网格外的点向汇点连一条容量为4的边. 答案就是 ...
- ios开发之IBOutlet和IBAction的区别
IBOutlet 输出口是使用关键字IBOutlet声明的实例变量.控制器头文件中的输出口声明应如下所示: @property (nonatomic, retain) IBOutlet UIButto ...
- 子元素的margin-top影响父元素原因和解决办法
这个问题会出现在所有浏览器当中,原因是css2.1盒子模型中规定, In this specification, the expression collapsing margins means tha ...
- Linux(Debian)下Maven的安装
Maven的下载地址:http://maven.apache.org/download.cgi这里以最新的3.3.9版本为例进行安装,在这之前需要确保机器上已经安装了JDK. -- 在home文件夹中 ...
- 入门1:PHP的优点
一.语法简单 二.学习成本低 (因为语法简单 所以学习成本低) 三.开发效率高 (PHP运行流程很简单,语法也很简单,必然开发效率就高) 四.跨平台 (我们只需要写一份PHP的程序,就可以非常方便的把 ...
- Android获取相册图片
1. AlertDialog的使用 2. 显示和隐式意图的区别 3. 相册页面的跳转 4. 选择完成后返回图片的获取 ----------------------------------------- ...
- windows系统安装ubuntu后,grub中没有windows启动项
我的问题: 安装系统时候,选择grub安装在sdb磁盘 http://forum.ubuntu.org.cn/viewtopic.php?f=139&t=474289&start=15 ...
- 【转】web开发需要知道的事情
在StackExchange上有人问了这样一个问题:What should every programmer know about web development?(关于Web开发,什么是所有程序员需 ...
- Delphi重载,覆盖,多态
一.override 重载 type TFigure = class procedure Draw; virtual;//(我的理解是)父类中可以使用父类的,子类中使用子类的.与“四”是有区别的. e ...
- 怎样在delphi中实现控件和窗体的拖拽
下面这2种方法都能实现对控件和窗体的拖拽 方法1 procedure TForm1.FormMouseDown(Sender: TObject; Button: TMouseButton; Shift ...