题意:给一张有向图G,求一个结点数最大的结点集,使得该结点中任意两个结点 u 和 v满足:要么 u 可以到达 v, 要么 v 可以到达 u(u 和 v 相互可达也可以)。

分析:”同一个强连通分量中的点要么都选,要么不选。把强连通分量收缩点后得到SCC图,让每个SCC结点的权等于它的结点数,则题目转化为求SCC图上权最大的路径。由于SCC图是一个 DAG, 可以用动态规划求解。“

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<stack>
#include<vector>
#define clc(a,b) memset(a,b,sizeof(a))
using namespace std;
const double eps=1e-;
const double pi=acos(-);
const int maxn=;
using namespace std; vector<int> G[maxn];
int pre[maxn], lowlink[maxn], sccno[maxn], dfs_clock, scc_cnt;
stack<int> S; void dfs(int u)
{
pre[u] = lowlink[u] = ++dfs_clock;
S.push(u);
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(!pre[v])
{
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if(!sccno[v])
{
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if(lowlink[u] == pre[u])
{
scc_cnt++;
for(;;)
{
int x = S.top();
S.pop();
sccno[x] = scc_cnt;
if(x == u) break;
}
}
} void find_scc(int n)
{
dfs_clock = scc_cnt = ;
memset(sccno, , sizeof(sccno));
memset(pre, , sizeof(pre));
for(int i = ; i < n; i++)
if(!pre[i]) dfs(i);
} int sizee[maxn], TG[maxn][maxn];
int d[maxn];
int dp(int u)
{
int& ans = d[u];
if(ans >= ) return ans;
ans = sizee[u];
for(int v = ; v <= scc_cnt; v++)
if(u != v && TG[u][v]) ans = max(ans, dp(v) + sizee[u]);
return ans;
} int main()
{
int T, n, m;
scanf("%d", &T);
while(T--)
{
scanf("%d%d", &n, &m);
for(int i = ; i < n; i++) G[i].clear();
for(int i = ; i < m; i++)
{
int u, v;
scanf("%d%d", &u, &v);
u--;
v--;
G[u].push_back(v);
} find_scc(n); // 找强连通分量 memset(TG, , sizeof(TG));
memset(sizee, , sizeof(sizee));
for(int i = ; i < n; i++)
{
sizee[sccno[i]]++; // 累加强连通分量大小(结点数)
for(int j = ; j < G[i].size(); j++)
TG[sccno[i]][sccno[G[i][j]]] = ; // 构造SCC图
} int ans = ;
memset(d, -, sizeof(d)); // 初始化动态规划记忆化数组
for(int i = ; i <= scc_cnt; i++) // 注意,SCC编号为1~scc_cnt
ans = max(ans, dp(i));
printf("%d\n", ans);
}
return ;
}

UVA11324 The Largest Clique(DP+缩点)的更多相关文章

  1. UVA11324 The Largest Clique (强连通缩点+DP最长路)

    <题目链接> 题目大意: 给你一张有向图 G,求一个结点数最大的结点集,使得该结点集中的任意两个结点 u 和 v 满足:要么 u 可以达 v,要么 v 可以达 u(u,v相互可达也行). ...

  2. UVA11324 The Largest Clique[强连通分量 缩点 DP]

    UVA - 11324 The Largest Clique 题意:求一个节点数最大的节点集,使任意两个节点至少从一个可以到另一个 同一个SCC要选一定全选 求SCC 缩点建一个新图得到一个DAG,直 ...

  3. 『题解』UVa11324 The Largest Clique

    原文地址 Problem Portal Portal1:UVa Portal2:Luogu Portal3:Vjudge Description Given a directed graph \(\t ...

  4. UVA11324 The Largest Clique —— 强连通分量 + 缩点 + DP

    题目链接:https://vjudge.net/problem/UVA-11324 题解: 题意:给出一张有向图,求一个结点数最大的结点集,使得任意两个结点u.v,要么u能到达v, 要么v能到达u(u ...

  5. UVA 11324.The Largest Clique tarjan缩点+拓扑dp

    题目链接:https://vjudge.net/problem/UVA-11324 题意:求一个有向图中结点数最大的结点集,使得该结点集中任意两个结点u和v满足:要目u可以到达v,要么v可以到达u(相 ...

  6. uva11324 The Largest Clique --- 强连通+dp

    给一个有向图G,求一个子图要求当中随意两点至少有一边可达. 问这个子图中最多含多少个顶点. 首先找SCC缩点建图.每一个点的权值就是该点包括点的个数. 要求当中随意两点可达,实际上全部边仅仅能同方向, ...

  7. UVA - 11324 The Largest Clique 强连通缩点+记忆化dp

    题目要求一个最大的弱联通图. 首先对于原图进行强连通缩点,得到新图,这个新图呈链状,类似树结构. 对新图进行记忆化dp,求一条权值最长的链,每一个点的权值就是当前强连通分量点的个数. /* Tarja ...

  8. UVA - 11324 The Largest Clique (强连通缩点+dp)

    题目链接 题意:从有向图G中找到一个最大的点集,使得该点集中任意两个结点u,v满足u可达v或v可达u. 解法:先把同处于一个强连通分量中的结点合并(缩点),得到一张DAG图,在DAG上dp即可. 感觉 ...

  9. UVA 11324 The Largest Clique(缩点+DAG上的dp)

    求最大团.和等价性证明有类似之处,只不过这个不是求互推,而是只要a->b,或b->a即可. 同样的,容易想到先缩点,得到DAG,每个节点上保存SCC的点数,相信任意一条由根节点(入度为零) ...

随机推荐

  1. (转载)delphi checklistbox用法

    delphi checklistbox用法 在Delphi中checklistbox中高亮选中(不论是否Checked)能够进行操作么?删除,上下移动等等 删除:CheckListBox.Delete ...

  2. poj 2104 K-th Number 划分树,主席树讲解

    K-th Number Input The first line of the input file contains n --- the size of the array, and m --- t ...

  3. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  4. uvision4 ide已停止工作

    情景描述: 笔者安装了新系统WIN8.1,装上了MDKV4.72.MDK编译程序可以正常工作,可是只要当我“下载程序”或者“调试程序”的时候就提示“uvision4 ide已停止工作”,迫不得已只能关 ...

  5. python eval函数

    eval()函数十分强大,官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果. 可以把字符串转为list.tuple .dict  等数据类型 1.把字符串转为字典 ####### ...

  6. Automotive Security的一些资料和心得(6):AUTOSAR

    1.1 Introduction AUTOSAR(汽车开放系统架构)是一个开放的,标准化的汽车软件架构,由汽车制造商,供应商和开发工具共同开发.它联合了汽车OEM ,供应商和开发工具供应商,其目标是创 ...

  7. AMH4.2免费版手动编译升级Nginx1.8版本方法

    从AMH免费版本停留在4.2版本之后就没有进行更新和升级,而且官方提供的解决文档也比较少,毕竟免费且没有盈利的产品还是没有多少兴趣的.但是,对于大部分网站环境来说,安装和使用AMH4.2免费版本还是够 ...

  8. [转载]MongoDB学习(三):MongoDB Shell的使用

    MongoDB shell MongoDB自带简洁但功能强大的JavaScript shell.JavaScript shell键入一个变量会将变量的值转换为字符串打印到控制台上. 下面介绍基本的操作 ...

  9. Ubuntu下与菜单和图标相关的几个文件夹

    转自UBUNTU下与菜单和图标相关的几个文件夹 /usr/share/icons  系统图标文件夹 /usr/share/applications  系统菜单文件夹,要在左上角的应用程序菜单中添加一项 ...

  10. ***微信浏览器禁止app下载链接怎么办

    通过扫描二维码下载APP已成为一个非常方便的方式,微信也成为扫描二维码重要的工具,但是扫描后微信浏览器会对APK和appStore的链接进行屏蔽,导致用户无法正常下载.本文提供两个迂回的解决方案:1. ...