Description

将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n-1)次后,原矩阵被分割成了n个矩阵。(每次分割都只能沿着数字间的缝隙进行)原矩阵中每一位置上有一个分值,一个矩阵的总分为其所含各位置上分值之和。现在需要把矩阵按上述规则分割成n个矩阵,并使各矩阵总分的均方差最小。请编程对给出的矩阵及n,求出均方差的最小值。

Input

第一行为3个整数,表示a,b,n≤10

Output

仅一个数,为均方差的最小值(四舍五入精确到小数点后2位)

Sample Input

5 4 4
2 3 4 6
5 7 5 1
10 4 0 5
2 0 2 3
4 1 1 1

Sample Output

0.50

HINT

 

Source

暴搜+记忆化。由于分割的块数一定,所以平均数可以直接计算出来。

f[i][j][k][l][p]表示横坐标为i到j,纵坐标为k到l的矩阵分成p份对答案贡献的最小值。(即为分割成的p份的每份的矩阵权值和与平均数的差的平方的和。eg:假设p=2,两个矩阵的权值和分别为s1、s2,平均数为m,则f[i][j][k][l][p]=(s1-m)2+(s2-m)2)。暴搜随便枚举几下就可以了。

最后求的是均方差,将方差开个根号即可。

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
using namespace std; #define inf (1e18)
#define maxn 15
int A,B,N; double f[maxn][maxn][maxn][maxn][maxn],s[maxn][maxn],ave; inline double qua(double a) { return a*a; } inline double calc(int h1,int h2,int l1,int l2)
{
double ret = ;
for (int i = h1;i <= h2;++i)
for (int j = l1;j <= l2;++j) ret += s[i][j];
return ret;
} inline int size(int h1,int h2,int l1,int l2) { return (h2-h1+)*(l2-l1+); } inline double dfs(int h1,int h2,int l1,int l2,int k)
{
if (f[h1][h2][l1][l2][k] >= ) return f[h1][h2][l1][l2][k];
if (k == ) return f[h1][h2][l1][l2][k] = qua(calc(h1,h2,l1,l2)-ave);
f[h1][h2][l1][l2][k] = 1e18;
for (int i = ;i < k;++i)
{
for (int j = h1;j < h2;++j)
if (size(h1,j,l1,l2)>=i&&size(j+,h2,l1,l2)>=k-i)
f[h1][h2][l1][l2][k] = min(f[h1][h2][l1][l2][k],dfs(h1,j,l1,l2,i)+dfs(j+,h2,l1,l2,k-i));
for (int j = l1;j < l2;++j)
if (size(h1,h2,l1,j)>=i&&size(h1,h2,j+,l2)>=k-i)
f[h1][h2][l1][l2][k] = min(f[h1][h2][l1][l2][k],dfs(h1,h2,l1,j,i)+dfs(h1,h2,j+,l2,k-i));
}
return f[h1][h2][l1][l2][k];
} int main()
{
scanf("%d %d %d",&A,&B,&N);
for (int i = ;i <= A;++i)
for (int j = ;j <= B;++j) scanf("%lf",s[i]+j);
memset(f,,sizeof(f)); ave = calc(,A,,B)/(1.0*N);
dfs(,A,,B,N);
printf("%.2lf",sqrt(f[][A][][B][N]/(1.0*N)));
return ;
}

BZOJ 1048 分割矩阵的更多相关文章

  1. 【BZOJ】【1048】【HAOI2007】分割矩阵

    DP/记忆化搜索 暴力枚举分割方案?……大概是指数级的?大约是20!的方案= =? 但是我们看到a.b.n的范围都很小……所以不同的状态数只是$10^5$级别的,可以记忆化搜索求解 比较水的一道题…… ...

  2. [BZOJ 1048] [HAOI2007] 分割矩阵 【记忆化搜索】

    题目链接:BZOJ - 1048 题目分析 感觉这种分割矩阵之类的题目很多都是这样子的. 方差中用到的平均数是可以直接算出来的,然后记忆化搜索 Solve(x, xx, y, yy, k) 表示横坐标 ...

  3. BZOJ 1048 [HAOI2007]分割矩阵

    1048: [HAOI2007]分割矩阵 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 623  Solved: 449[Submit][Status ...

  4. bzoj千题计划186:bzoj1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 #include<cmath> #include<cstdio> #i ...

  5. 【BZOJ1048】 [HAOI2007]分割矩阵

    [BZOJ1048][HAOI2007]分割矩阵 题面 bzoj 洛谷 题解 \(dp[a][b][c][d][num]\)表示将矩形\((a,b,c,d)\)分成\(num\)个的最小方差,然后转移 ...

  6. 【BZOJ1048】分割矩阵(记忆化搜索,动态规划)

    [BZOJ1048]分割矩阵(记忆化搜索,动态规划) 题面 BZOJ 洛谷 题解 一个很简单的\(dp\),写成记忆化搜索的形式的挺不错的. #include<iostream> #inc ...

  7. 洛谷P2217 [HAOI2007]分割矩阵

    P2217 [HAOI2007]分割矩阵 题目描述 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n ...

  8. 【BZOJ】1048: [HAOI2007]分割矩阵

    http://www.lydsy.com/JudgeOnline/problem.php?id=1048 题意:给出一个a×b(a,b<=10)的矩阵,带一个<=100的权值,现在要切割n ...

  9. 1048: [HAOI2007]分割矩阵 - BZOJ

    Description 将一个a*b的数字矩阵进行如下分割:将原矩阵沿某一条直线分割成两个矩阵,再将生成的两个矩阵继续如此分割(当然也可以只分割其中的一个),这样分割了(n-1)次后,原矩阵被分割成了 ...

随机推荐

  1. hdu1558--并查集+判断线段相交

    简单的计算几何题,判断两线段是否相交.将相交的两线段使用并查集归到一类中.查询时输出线段对应集合中元素的个数. #include<stdio.h> struct Point{ double ...

  2. Qt 学习之路:线程总结

    前面我们已经详细介绍过有关线程的一些值得注意的事项.现在我们开始对线程做一些总结. 有关线程,你可以做的是: 在QThread子类添加信号.这是绝对安全的,并且也是正确的(前面我们已经详细介绍过,发送 ...

  3. MyBatis Tutorial – CRUD Operations and Mapping Relationships – Part 1---- reference

    http://www.javacodegeeks.com/2012/11/mybatis-tutorial-crud-operations-and-mapping-relationships-part ...

  4. linux文件系统和mount(硬盘,win分区,光驱,U盘)

    fdisk –l查看dos/win/ext2分区(partiton,不是slice,slice是solaris分区) [root@localhost etc]# /sbin/fdisk -l Disk ...

  5. Android Studio 2.2 External Build

    今天在用studio写Native程序时发现2.2版本引入了一个 External Build来进行Native项目的构建. 最直观的表现就是c/c++的源码文件不用跟java文件在一个项目文件夹下了 ...

  6. [转] Immutable 详解及 React 中实践

    https://zhuanlan.zhihu.com/p/20295971 作者:camsong链接:https://zhuanlan.zhihu.com/p/20295971来源:知乎著作权归作者所 ...

  7. Service 如何知道caller

    重写Binder的onTransact方法 1   you need to do that in Binder#onTransact method, this is a good place for ...

  8. 动态添加子视图 UIView 的正确方法

    很多时候哥比较喜欢用代码添加视图,特别是要同时加很多UIView时,而且跟 xib 比起来代码更容易管理,在多人的项目中代码不容易 conflict. 但小牛哥最近发现很多新人都不太清楚正确的使用方法 ...

  9. Java和C++在细节上的差异(转)

    Java的基本程序结构.关键字.操作符都和C/C++非常相似,以下为主要的几点区别: 一.基本程序设计结构: Java的基本程序结构.关键字.操作符都和C/C++非常相似,以下为主要的几点区别: 1. ...

  10. 事件触发函数中的this,target,currentTarget,srcElement

    要解释其中的区别,首先要理解浏览器的事件机制, 现在主流的浏览器事件基本是先捕获再冒泡,IE浏览器只有冒泡阶段 事件是在冒泡阶段触发的 看看这个HTML 当我点击"我是父节点的时候" ...