UVA10518 - How Many Calls?(矩阵高速幂)

题目链接

题目大意:给你fibonacci数列怎么求的。然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用,而且这个数非常大,取模一个进制的数。

解题思路:要发现F(n) = 2 *f(n) - 1这个规律。预计要非常熟系fibonacci数列,我明明推出了好多项后可是一点也没有发现规律。

然后要用矩阵高速幂来求fibonacci。由于n非常大。

构造这种矩阵

1, 1 (2*2矩阵) *  f(n - 1) (2*1矩阵) 等于 f(n - 1) + f(n - 2)(2*1矩阵)

1。 0                          f (n - 2)                             f(n - 1) 





这样就能够用前面的那么系数矩阵的n次幂乘上f(1) 这个矩阵得到最后想要的答案。

f(0)

代码:

#include <cstdio>
#include <cstring> typedef long long ll;
const int maxn = 2;
int base; struct Mat { int s[maxn][maxn]; void init () {
s[0][0] = s[0][1] = s[1][0] = 1;
s[1][1] = 0;
} Mat operator ^ (const Mat& t) const { Mat arr;
memset (arr.s, 0, sizeof(arr.s)); for (int i = 0; i < maxn; i++)
for (int j = 0; j < maxn; j++)
for (int k = 0; k < maxn; k++)
arr.s[i][j] = (arr.s[i][j] + s[i][k] * t.s[k][j]) % base;
return arr;
}
}; Mat Fmod (ll n, Mat a) { if (n == 1)
return a; Mat tmp = Fmod(n/2, a);
tmp = tmp ^ tmp;
if (n % 2 == 1)
tmp = tmp ^ a; /* printf ("%lld\n", n);
for (int i = 0; i < maxn; i++)
printf ("%d %d\n", tmp.s[i][0], tmp.s[i][1]);*/
return tmp;
} int main () { ll n;
int cas = 0;
Mat a, ans; while (scanf ("%lld%d", &n, &base) && (n || base)) { a.init();
if (n)
ans = Fmod(n, a);
else
ans = a;
printf ("Case %d: %lld %d %d\n", ++cas, n, base, (ans.s[0][0] * 2 + base - 1) % base);
}
return 0;
}

UVA10518 - How Many Calls?(矩阵高速幂)的更多相关文章

  1. UVA10518 How Many Calls? —— 矩阵快速幂

    题目链接:https://vjudge.net/problem/UVA-10518 题解: 问:求斐波那契数f[n]的时候调用了多少次f[n] = f[n-1] + f[n-2],没有记忆化,一直递归 ...

  2. UVA 11551 - Experienced Endeavour(矩阵高速幂)

    UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...

  3. HDU2842-Chinese Rings(递推+矩阵高速幂)

    pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...

  4. HDU2276 - Kiki &amp; Little Kiki 2(矩阵高速幂)

    pid=2276">题目链接 题意:有n盏灯.编号从1到n.他们绕成一圈,也就是说.1号灯的左边是n号灯.假设在第t秒的时候,某盏灯左边的灯是亮着的,那么就在第t+1秒的时候改变这盏灯 ...

  5. uva 10655 - Contemplation! Algebra(矩阵高速幂)

    题目连接:uva 10655 - Contemplation! Algebra 题目大意:输入非负整数,p.q,n,求an+bn的值,当中a和b满足a+b=p,ab=q,注意a和b不一定是实数. 解题 ...

  6. hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)

    http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...

  7. HDU5015 233 Matrix(矩阵高速幂)

    HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...

  8. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  9. HDU 1575 Tr A(矩阵高速幂)

    题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...

随机推荐

  1. Python的数字类型及其技巧

    Python中的数字类型 int float fractions.Fraction decimal.Decimal 数字的舍与入 int(f):舍去小数部分,只保留整数部分,所以int(-3.8)的结 ...

  2. 个人笔记--Servlet之过滤器实现权限拦截

    一.编写一个Java类实现javax.servlet.Filter接口 package cn.edu.sxu.filter; import java.io.IOException; import ja ...

  3. bzoj 3851: 2048 dp优化

    3851: 2048 Time Limit: 2 Sec  Memory Limit: 64 MBSubmit: 22  Solved: 9[Submit][Status] Description T ...

  4. Tiny210v2( S5PV210 )平台下创建基本根文件系统

    转自Tiny210v2( S5PV210 )平台下创建基本根文件系统 0. 概要介绍 ========================================================= ...

  5. lubuntu安装maven

    原文转自:jobar.iteye.com/blog/1776747 1 apt-cache search maven 获取所有可用的maven包 2 sudo apt-get install mave ...

  6. 使用ListView时遇到的问题

    这周练习ListView时遇到了一个问题,从数据库中查询出的数据绑定到LIstView上,长按某个item进行删除操作,每次点击item取得的id都不对,调了半天终于找到了原因,关键是自己对自定义的B ...

  7. eclipse导入已有源码

    http://blog.csdn.net/scruffybear/article/details/1917301 如有转载,请注明出处,并保持文章的完整性,谢谢! 最近工作之余在研究国外经典书籍< ...

  8. Process.RedirectStandardInput

    获取或设置一个值,该值指示应用程序的输入是否从 Process.StandardInput 流中读取. 命名空间:System.Diagnostics程序集:System(在 system.dll 中 ...

  9. Rocky(dfs)

    题目描述 Sylvester Stallion is an old horse who likes nothing better than to wander around in the fields ...

  10. div居中鼠标悬浮显示下拉列表

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...