UVA10518 - How Many Calls?(矩阵高速幂)
UVA10518 - How Many Calls?(矩阵高速幂)
题目大意:给你fibonacci数列怎么求的。然后问你求f(n) = f(n - 1) + f(n - 2)须要多少次调用,而且这个数非常大,取模一个进制的数。
解题思路:要发现F(n) = 2 *f(n) - 1这个规律。预计要非常熟系fibonacci数列,我明明推出了好多项后可是一点也没有发现规律。
然后要用矩阵高速幂来求fibonacci。由于n非常大。
构造这种矩阵
1, 1 (2*2矩阵) * f(n - 1) (2*1矩阵) 等于 f(n - 1) + f(n - 2)(2*1矩阵)
1。 0 f (n - 2) f(n - 1)
这样就能够用前面的那么系数矩阵的n次幂乘上f(1) 这个矩阵得到最后想要的答案。
f(0)
代码:
#include <cstdio>
#include <cstring>
typedef long long ll;
const int maxn = 2;
int base;
struct Mat {
int s[maxn][maxn];
void init () {
s[0][0] = s[0][1] = s[1][0] = 1;
s[1][1] = 0;
}
Mat operator ^ (const Mat& t) const {
Mat arr;
memset (arr.s, 0, sizeof(arr.s));
for (int i = 0; i < maxn; i++)
for (int j = 0; j < maxn; j++)
for (int k = 0; k < maxn; k++)
arr.s[i][j] = (arr.s[i][j] + s[i][k] * t.s[k][j]) % base;
return arr;
}
};
Mat Fmod (ll n, Mat a) {
if (n == 1)
return a;
Mat tmp = Fmod(n/2, a);
tmp = tmp ^ tmp;
if (n % 2 == 1)
tmp = tmp ^ a;
/* printf ("%lld\n", n);
for (int i = 0; i < maxn; i++)
printf ("%d %d\n", tmp.s[i][0], tmp.s[i][1]);*/
return tmp;
}
int main () {
ll n;
int cas = 0;
Mat a, ans;
while (scanf ("%lld%d", &n, &base) && (n || base)) {
a.init();
if (n)
ans = Fmod(n, a);
else
ans = a;
printf ("Case %d: %lld %d %d\n", ++cas, n, base, (ans.s[0][0] * 2 + base - 1) % base);
}
return 0;
}
UVA10518 - How Many Calls?(矩阵高速幂)的更多相关文章
- UVA10518 How Many Calls? —— 矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-10518 题解: 问:求斐波那契数f[n]的时候调用了多少次f[n] = f[n-1] + f[n-2],没有记忆化,一直递归 ...
- UVA 11551 - Experienced Endeavour(矩阵高速幂)
UVA 11551 - Experienced Endeavour 题目链接 题意:给定一列数,每一个数相应一个变换.变换为原先数列一些位置相加起来的和,问r次变换后的序列是多少 思路:矩阵高速幂,要 ...
- HDU2842-Chinese Rings(递推+矩阵高速幂)
pid=2842">题目链接 题意:求出最少步骤解出九连环. 取出第k个的条件是,k-2个已被取出,k-1个仍在支架上. 思路:想必九连环都玩过吧,事实上最少步骤就是从最后一个环開始. ...
- HDU2276 - Kiki & Little Kiki 2(矩阵高速幂)
pid=2276">题目链接 题意:有n盏灯.编号从1到n.他们绕成一圈,也就是说.1号灯的左边是n号灯.假设在第t秒的时候,某盏灯左边的灯是亮着的,那么就在第t+1秒的时候改变这盏灯 ...
- uva 10655 - Contemplation! Algebra(矩阵高速幂)
题目连接:uva 10655 - Contemplation! Algebra 题目大意:输入非负整数,p.q,n,求an+bn的值,当中a和b满足a+b=p,ab=q,注意a和b不一定是实数. 解题 ...
- hdu 3221 Brute-force Algorithm(高速幂取模,矩阵高速幂求fib)
http://acm.hdu.edu.cn/showproblem.php?pid=3221 一晚上搞出来这么一道题..Mark. 给出这么一个程序.问funny函数调用了多少次. 我们定义数组为所求 ...
- HDU5015 233 Matrix(矩阵高速幂)
HDU5015 233 Matrix(矩阵高速幂) 题目链接 题目大意: 给出n∗m矩阵,给出第一行a01, a02, a03 ...a0m (各自是233, 2333, 23333...), 再给定 ...
- [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)
Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3048 Accepted: 12 ...
- HDU 1575 Tr A(矩阵高速幂)
题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如 ...
随机推荐
- [置顶] Android Journal
==================================================================================================== ...
- 两台主机打通ssh
ssh打通基本概念:如果需要通过SSH进行远程登录,我们一般是需要手动输入密码,但如果将SSH之间的权限打通的话,就可以实现无密码登录.这对shell脚本的定时执行有很大的帮助. (一),生成秘钥,先 ...
- 【Xamarin挖墙脚系列:卸载不彻底的解决】
原文:[Xamarin挖墙脚系列:卸载不彻底的解决] 卸载后,再次安装,总是授权还是原来的.请手工删除下文件: 卸载程序后 必须手工删除C:\ProgramData\Mono for Android\ ...
- 在android4.0中实现View的拖动效果
实现方法: 首先需要定义一个支持拖动的源组件和一个作为Drop区域的目标组件. 在支持拖动的组件中注册OnTouchListener 或LongClickListener监听事件,构建一个ClipDa ...
- Linux 安装Maven和nexus代理仓库
1 说明 2 安装步骤 2.1 下载地址 2.2 MAVEN安装步骤 2.2.1 解压Maven安装包 2.2.2 配置环境变量 2.3 Sonatyp ...
- eval
字符串形式:表达式计算 Vsftp:/root/perl/14# cat aa 9 5 1 2 Vsftp:/root/perl/14# cat a1.pl open (A,aa); while ($ ...
- 17.1 Replication Configuration 复制配置
17.1 Replication Configuration 复制配置 17.1.1 How to Set Up Replication 17.1.2 Replication Formats 17.1 ...
- oracle 读取最大值sql
select * from table a1 where rowid = ( select max(rowid) from table a2 where a2.id_subject_cost=a1.i ...
- 使用Xcode Instruments Leak解决内存泄漏问题
iOS 5.0之后apple引入了Xcode编译器特性ARC(Automatic Reference Counting,自动引用计数)来帮助开发者管理内存,但为了追求app的高性能与减少安装包大小,工 ...
- 圣诞福利到!51Testing邀你一起来狂欢!有礼就是任性~(≧▽≦)/~
“我想变成一棵树,一棵只为你存在的圣诞树,顶上最大最亮的那颗星是我的真心,下面挂满我对你的祝福. 你的关注是我的幸福,你的肯定是我的力量,而我将用更多精彩的内容,用心的分享,给你下一个一整年的 精彩! ...