Mat

OpenCV C++ n-dimensional dense array class

The class Mat represents an n-dimensional dense numerical single-channel or multi-channel array. It can be used to store real or complex-valued vectors and matrices, grayscale or color images, voxel volumes, vector fields, point clouds, tensors, histograms (though, very high-dimensional histograms may be better stored in a SparseMat ).

 

The data layout of the array is defined by the array M.step[], so that the address of element , where , is computed as:

In case of a 2-dimensional array, the above formula is reduced to:

 

Note that M.step[i] >= M.step[i+1] (in fact, M.step[i] >= M.step[i+1]*M.size[i+1] ). This means that 2-dimensional matrices are stored row-by-row, 3-dimensional matrices are stored plane-by-plane, and so on. M.step[M.dims-1] is minimal and always equal to the element size M.elemSize() .

 

There are many different ways to create a Mat object.

Use the create(nrows, ncols, type) method or the similar Mat(nrows, ncols, type[, fillValue]) constructor.

// make a 7x7 complex matrix filled with 1+3j.
Mat M(7,7,CV_32FC2,Scalar(1,3));
// and now turn M to a 100x60 15-channel 8-bit matrix.
// The old content will be deallocated
M.create(100,60,CV_8UC(15));

As noted in the introduction to this chapter, create() allocates only a new array when the shape or type of the current array are different from the specified ones.

Create a multi-dimensional array:

// create a 100x100x100 8-bit array
int sz[] = {100, 100, 100};
Mat bigCube(3, sz, CV_8U, Scalar::all(0));

It passes the number of dimensions =1 to the Mat constructor but the created array will be 2-dimensional with the number of columns set to 1. So, Mat::dims is always >= 2 (can also be 0 when the array is empty).

Construct a header for a part of another array. It can be a single row, single column, several rows, several columns, rectangular region in the array (called a minor in algebra) or a diagonal. Such operations are also O(1) because the new header references the same data. You can actually modify a part of the array using this feature, for example:

// add the 5-th row, multiplied by 3 to the 3rd row
M.row(3) = M.row(3) + M.row(5)*3; // now copy the 7-th column to the 1-st column
// M.col(1) = M.col(7); // this will not work
Mat M1 = M.col(1);
M.col(7).copyTo(M1); // create a new 320x240 image
Mat img(Size(320,240),CV_8UC3);
// select a ROI
Mat roi(img, Rect(10,10,100,100));
// fill the ROI with (0,255,0) (which is green in RGB space);
// the original 320x240 image will be modified
roi = Scalar(0,255,0);

Due to the additional datastart and dataend members, it is possible to compute a relative sub-array position in the main container array using locateROI():

Mat A = Mat::eye(10, 10, CV_32S);
// extracts A columns, 1 (inclusive) to 3 (exclusive).
Mat B = A(Range::all(), Range(1, 3));
// extracts B rows, 5 (inclusive) to 9 (exclusive).
// that is, C ~ A(Range(5, 9), Range(1, 3))
Mat C = B(Range(5, 9), Range::all());
Size size; Point ofs;
C.locateROI(size, ofs);
// size will be (width=10,height=10) and the ofs will be (x=1, y=5)

 

Make a header for user-allocated data. It can be useful to do the following:

Process “foreign” data using OpenCV (for example, when you implement a DirectShow* filter or a processing module for gstreamer, and so on). For example:

void process_video_frame(const unsigned char* pixels,
int width, int height, int step)
{
Mat img(height, width, CV_8UC3, pixels, step);
GaussianBlur(img, img, Size(7,7), 1.5, 1.5);
}

Quickly initialize small matrices and/or get a super-fast element access.

double m[3][3] = {{a, b, c}, {d, e, f}, {g, h, i}};
Mat M = Mat(3, 3, CV_64F, m).inv();

 

Partial yet very common cases of this user-allocated data case are conversions from CvMat and IplImage to Mat. For this purpose, there are special constructors taking pointers to CvMat or IplImage and the optional flag indicating whether to copy the data or not.

Backward conversion from Mat to CvMat or IplImage is provided via cast operators Mat::operator CvMat()const and Mat::operator IplImage(). The operators do NOT copy the data.

IplImage* img = cvLoadImage("greatwave.jpg", 1);
Mat mtx(img); // convert IplImage* -> Mat
CvMat oldmat = mtx; // convert Mat -> CvMat
CV_Assert(oldmat.cols == img->width && oldmat.rows == img->height &&
oldmat.data.ptr == (uchar*)img->imageData && oldmat.step == img->widthStep);

 

Use MATLAB-style array initializers, zeros(), ones(), eye(), for example:

// create a double-precision identity martix and add it to M.
M += Mat::eye(M.rows, M.cols, CV_64F);

 

 

Use a comma-separated initializer:

// create a 3x3 double-precision identity matrix
Mat M = (Mat_<double>(3,3) << 1, 0, 0, 0, 1, 0, 0, 0, 1);

 

// compute sum of positive matrix elements
// (assuming that M isa double-precision matrix)
double sum=0;
for(int i = 0; i < M.rows; i++)
{
const double* Mi = M.ptr<double>(i);
for(int j = 0; j < M.cols; j++)
sum += std::max(Mi[j], 0.);
}

 

// compute the sum of positive matrix elements, optimized variant
double sum=0;
int cols = M.cols, rows = M.rows;
if(M.isContinuous())
{
cols *= rows;
rows = 1;
}
for(int i = 0; i < rows; i++)
{
const double* Mi = M.ptr<double>(i);
for(int j = 0; j < cols; j++)
sum += std::max(Mi[j], 0.);
}

 

// compute sum of positive matrix elements, iterator-based variant
double sum=0;
MatConstIterator_<double> it = M.begin<double>(), it_end = M.end<double>();
for(; it != it_end; ++it)
sum += std::max(*it, 0.);

 

Mat::row

Creates a matrix header for the specified matrix row.

The method makes a new header for the specified matrix row and returns it. This is an O(1) operation, regardless of the matrix size. The underlying data of the new matrix is shared with the original matrix.

Mat::rowRange

Creates a matrix header for the specified row span.

The method makes a new header for the specified row span of the matrix. Similarly to Mat::row() and Mat::col() , this is an O(1) operation.

Mat::copyTo

Copies the matrix to another one.

The method copies the matrix data to another matrix. Before copying the data, the method invokes

m.create(this->size(), this->type());

so that the destination matrix is reallocated if needed. While m.copyTo(m); works flawlessly, the function does not handle the case of a partial overlap between the source and the destination matrices.

When the operation mask is specified, if the Mat::create call shown above reallocates the matrix, the newly allocated matrix is initialized with all zeros before copying the data.

 

 

Mat 类的熟悉程度决定着对OpenCV的操纵能力,必须花时间掌握好~~

OPENCV(2) —— Basic Structures(二)的更多相关文章

  1. OPENCV(2) —— Basic Structures(一)

    DataType A primitive OpenCV data type is one of unsigned char, bool,signed char, unsigned short, sig ...

  2. opencv学习笔记(二)寻找轮廓

    opencv学习笔记(二)寻找轮廓 opencv中使用findContours函数来查找轮廓,这个函数的原型为: void findContours(InputOutputArray image, O ...

  3. HTTP认证之基本认证——Basic(二)

    导航 HTTP认证之基本认证--Basic(一) HTTP认证之基本认证--Basic(二) HTTP认证之摘要认证--Digest(一) HTTP认证之摘要认证--Digest(二) 在HTTP认证 ...

  4. OpenCV中Mat与二维数组之间的转换

    ---恢复内容开始--- 在OpenCV中将Mat(二维)与二维数组相对应,即将Mat中的每个像素值赋给一个二维数组. 全部代码如下: #include <iostream> #inclu ...

  5. 基于Opencv识别,矫正二维码(C++)

    参考链接 [ 基于opencv 识别.定位二维码 (c++版) ](https://www.cnblogs.com/yuanchenhui/p/opencv_qr.html) OpenCV4.0.0二 ...

  6. OpenCV使用FindContours进行二维码定位

    我使用过FindContours,而且知道有能够直接寻找联通区域的函数.但是我使用的大多只是"最大轮廓"或者"轮廓数目"这些数据.其实轮廓还有另一个很重要的性质 ...

  7. opencv探索之路(十二):感兴趣区域ROI和logo添加技术

    在图像处理领域,有一个非常重要的名词ROI. 什么是ROI? 它的英文全称是Region Of Interest,对应的中文解释就是感兴趣区域. 感兴趣区域,就是我们从图像中选择一个图像区域,这个区域 ...

  8. Python+OpenCV图像处理(十二)—— 图像梯度

    简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...

  9. Python下opencv使用笔记(二)(简单几何图像绘制)

    简单几何图像一般包含点.直线.矩阵.圆.椭圆.多边形等等.首先认识一下opencv对像素点的定义. 图像的一个像素点有1或者3个值.对灰度图像有一个灰度值,对彩色图像有3个值组成一个像素值.他们表现出 ...

随机推荐

  1. 紫书 例题8-15 UVa 12174 (滑动窗口)

    这道题就是给你一n长序列, 然后把这个序列按顺序分成很多段, 每段长s(最前面可以小于s, 只有第一段的后半段, 最后面也同样, 只有最后一段的前半段), 然后要求是每一段里面没有重复的数, 问你有几 ...

  2. 对jvm进行gc的时间、数量、jvm停顿时间的监控

    在jdk中一个类可以获得gc的信息: public static void main(String[] args) { List<GarbageCollectorMXBean> garba ...

  3. 局部加权回归、欠拟合、过拟合 - Andrew Ng机器学习公开课笔记1.3

    本文主要解说局部加权(线性)回归.在解说局部加权线性回归之前,先解说两个概念:欠拟合.过拟合.由此引出局部加权线性回归算法. 欠拟合.过拟合 例如以下图中三个拟合模型.第一个是一个线性模型.对训练数据 ...

  4. 又见关系并查集 以POJ 1182 食物链为例

    简单的关系并查集一般非常easy依据给出的关系搞出一个有向的环,那么两者之间的关系就变成了两者之间的距离. 对于此题: 若u.v不在一个集合内,则显然此条语句会合法(暂且忽略后两条.下同). 那么将f ...

  5. 【CTO辩论会】移动开发人员忠于技术or 背离技术

    第一期CTO辩论会结束后,大家在微信群中讨论,学什么编程语言好.有位官人直呼"劳力者治于人,苦差,不学也罢". 在IT.科技变革世界的今天,移动开发人员成为一个很时髦的工种. 就连 ...

  6. pig 调试(explain&amp;illerstrate)

    grunt> cat t.txt kw1 2 kw3 1 kw2 4 kw1 5 kw2 2 cat test.pig A = LOAD '/user/input/t.txt' as (k:ch ...

  7. Pocket英语语法---二、指示代词和不定代词是什么

    Pocket英语语法---二.指示代词和不定代词是什么 一.总结 一句话总结: 指示代词:标识人或事物的代词,用来代替前面已提到过的名词 this.these.that.those不定代词:指代不确定 ...

  8. django笔记10 cookie整理

    感谢武沛齐老师 Alex老师 cookie 没有cookie所有的网站都登录不上 客户端浏览器上的一个文件 {'user':'ljc'} {"user":'zpt'} reques ...

  9. 3.c语言结构体成员内存对齐详解

    一.关键一点 最关键的一点:结构体在内存中是一个矩形,而不是一个不规则形状 二.编程实战 #include <stdlib.h> #include <stdio.h> stru ...

  10. ubuntu12.04

    最近越来越觉得必须用Linux了,于是装了15.04,好不习惯的感觉,思维还是10.10的时代. 尝试做种http://jingyan.baidu.com/article/a681b0dedad55c ...