uva 1463 - Largest Empty Circle on a Segment(二分+三分+几何)
题目链接:uva 1463 - Largest Empty Circle on a Segment
二分半径,对于每一个半径,用三分求出线段到线段的最短距离,依据最短距离能够确定当前R下每条线段在[0,L]上的可行区间,存在一个点被可行区间覆盖n次。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <vector>
#include <algorithm> using namespace std;
const double pi = 4 * atan(1);
const double eps = 1e-9; inline int dcmp (double x) { if (fabs(x) < eps) return 0; else return x < 0 ? -1 : 1; }
inline double getDistance (double x, double y) { return sqrt(x * x + y * y); } struct Point {
double x, y;
Point (double x = 0, double y = 0): x(x), y(y) {}
void read () { scanf("%lf%lf", &x, &y); }
void write () { printf("%lf %lf", x, y); } bool operator == (const Point& u) const { return dcmp(x - u.x) == 0 && dcmp(y - u.y) == 0; }
bool operator != (const Point& u) const { return !(*this == u); }
bool operator < (const Point& u) const { return x < u.x || (x == u.x && y < u.y); }
bool operator > (const Point& u) const { return u < *this; }
bool operator <= (const Point& u) const { return *this < u || *this == u; }
bool operator >= (const Point& u) const { return *this > u || *this == u; }
Point operator + (const Point& u) { return Point(x + u.x, y + u.y); }
Point operator - (const Point& u) { return Point(x - u.x, y - u.y); }
Point operator * (const double u) { return Point(x * u, y * u); }
Point operator / (const double u) { return Point(x / u, y / u); }
double operator * (const Point& u) { return x*u.y - y*u.x; }
}; typedef Point Vector; struct Line {
double a, b, c;
Line (double a = 0, double b = 0, double c = 0): a(a), b(b), c(c) {}
}; struct Circle {
Point o;
double r;
Circle () {}
Circle (Point o, double r = 0): o(o), r(r) {}
void read () { o.read(), scanf("%lf", &r); }
Point point(double rad) { return Point(o.x + cos(rad)*r, o.y + sin(rad)*r); }
double getArea (double rad) { return rad * r * r / 2; }
}; namespace Punctual {
double getDistance (Point a, Point b) { double x=a.x-b.x, y=a.y-b.y; return sqrt(x*x + y*y); }
}; namespace Vectorial {
/* 点积: 两向量长度的乘积再乘上它们夹角的余弦, 夹角大于90度时点积为负 */
double getDot (Vector a, Vector b) { return a.x * b.x + a.y * b.y; } /* 叉积: 叉积等于两向量组成的三角形有向面积的两倍, cross(v, w) = -cross(w, v) */
double getCross (Vector a, Vector b) { return a.x * b.y - a.y * b.x; } double getLength (Vector a) { return sqrt(getDot(a, a)); }
double getPLength (Vector a) { return getDot(a, a); }
double getAngle (Vector u) { return atan2(u.y, u.x); }
double getAngle (Vector a, Vector b) { return acos(getDot(a, b) / getLength(a) / getLength(b)); }
Vector rotate (Vector a, double rad) { return Vector(a.x*cos(rad)-a.y*sin(rad), a.x*sin(rad)+a.y*cos(rad)); }
/* 单位法线 */
Vector getNormal (Vector a) { double l = getLength(a); return Vector(-a.y/l, a.x/l); }
}; namespace Linear {
using namespace Vectorial; Line getLine (double x1, double y1, double x2, double y2) { return Line(y2-y1, x1-x2, y1*(x2-x1)-x1*(y2-y1)); }
Line getLine (double a, double b, Point u) { return Line(a, -b, u.y * b - u.x * a); } bool getIntersection (Line p, Line q, Point& o) {
if (fabs(p.a * q.b - q.a * p.b) < eps)
return false;
o.x = (q.c * p.b - p.c * q.b) / (p.a * q.b - q.a * p.b);
o.y = (q.c * p.a - p.c * q.a) / (p.b * q.a - q.b * p.a);
return true;
} /* 直线pv和直线qw的交点 */
bool getIntersection (Point p, Vector v, Point q, Vector w, Point& o) {
if (dcmp(getCross(v, w)) == 0) return false;
Vector u = p - q;
double k = getCross(w, u) / getCross(v, w);
o = p + v * k;
return true;
} /* 点p到直线ab的距离 */
double getDistanceToLine (Point p, Point a, Point b) { return fabs(getCross(b-a, p-a) / getLength(b-a)); }
double getDistanceToSegment (Point p, Point a, Point b) {
if (a == b) return getLength(p-a);
Vector v1 = b - a, v2 = p - a, v3 = p - b;
if (dcmp(getDot(v1, v2)) < 0) return getLength(v2);
else if (dcmp(getDot(v1, v3)) > 0) return getLength(v3);
else return fabs(getCross(v1, v2) / getLength(v1));
} /* 点p在直线ab上的投影 */
Point getPointToLine (Point p, Point a, Point b) { Vector v = b-a; return a+v*(getDot(v, p-a) / getDot(v,v)); } /* 推断线段是否存在交点 */
bool haveIntersection (Point a1, Point a2, Point b1, Point b2) {
double c1=getCross(a2-a1, b1-a1), c2=getCross(a2-a1, b2-a1), c3=getCross(b2-b1, a1-b1), c4=getCross(b2-b1,a2-b1);
return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
} /* 推断点是否在线段上 */
bool onSegment (Point p, Point a, Point b) { return dcmp(getCross(a-p, b-p)) == 0 && dcmp(getDot(a-p, b-p)) < 0; }
} namespace Triangular {
using namespace Vectorial; double getAngle (double a, double b, double c) { return acos((a*a+b*b-c*c) / (2*a*b)); }
double getArea (double a, double b, double c) { double s =(a+b+c)/2; return sqrt(s*(s-a)*(s-b)*(s-c)); }
double getArea (double a, double h) { return a * h / 2; }
double getArea (Point a, Point b, Point c) { return fabs(getCross(b - a, c - a)) / 2; }
double getDirArea (Point a, Point b, Point c) { return getCross(b - a, c - a) / 2; }
}; namespace Polygonal {
using namespace Vectorial;
using namespace Linear; double getArea (Point* p, int n) {
double ret = 0;
for (int i = 1; i < n-1; i++)
ret += getCross(p[i]-p[0], p[i+1]-p[0]);
return fabs(ret)/2;
} /* 凸包 */
int getConvexHull (Point* p, int n, Point* ch) {
sort(p, p + n);
int m = 0;
for (int i = 0; i < n; i++) {
/* 可共线 */
//while (m > 1 && dcmp(getCross(ch[m-1]-ch[m-2], p[i]-ch[m-1])) < 0) m--;
while (m > 1 && dcmp(getCross(ch[m-1]-ch[m-2], p[i]-ch[m-1])) <= 0) m--;
ch[m++] = p[i];
}
int k = m;
for (int i = n-2; i >= 0; i--) {
/* 可共线 */
//while (m > k && dcmp(getCross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) < 0) m--;
while (m > k && dcmp(getCross(ch[m-1]-ch[m-2], p[i]-ch[m-2])) <= 0) m--;
ch[m++] = p[i];
}
if (n > 1) m--;
return m;
} int isPointInPolygon (Point o, Point* p, int n) {
int wn = 0;
for (int i = 0; i < n; i++) {
int j = (i + 1) % n;
if (onSegment(o, p[i], p[j])) return 0; // 边界上
int k = dcmp(getCross(p[j] - p[i], o-p[i]));
int d1 = dcmp(p[i].y - o.y);
int d2 = dcmp(p[j].y - o.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
return wn ? -1 : 1;
}
}; namespace Circular {
using namespace Linear;
using namespace Vectorial;
using namespace Triangular; /* 直线和原的交点 */
int getLineCircleIntersection (Point p, Point q, Circle O, double& t1, double& t2, vector<Point>& sol) {
Vector v = q - p;
/* 使用前需清空sol */
//sol.clear();
double a = v.x, b = p.x - O.o.x, c = v.y, d = p.y - O.o.y;
double e = a*a+c*c, f = 2*(a*b+c*d), g = b*b+d*d-O.r*O.r;
double delta = f*f - 4*e*g;
if (dcmp(delta) < 0) return 0;
if (dcmp(delta) == 0) {
t1 = t2 = -f / (2 * e);
sol.push_back(p + v * t1);
return 1;
} t1 = (-f - sqrt(delta)) / (2 * e); sol.push_back(p + v * t1);
t2 = (-f + sqrt(delta)) / (2 * e); sol.push_back(p + v * t2);
return 2;
} /* 圆和圆的交点 */
int getCircleCircleIntersection (Circle o1, Circle o2, vector<Point>& sol) {
double d = getLength(o1.o - o2.o); if (dcmp(d) == 0) {
if (dcmp(o1.r - o2.r) == 0) return -1;
return 0;
} if (dcmp(o1.r + o2.r - d) < 0) return 0;
if (dcmp(fabs(o1.r-o2.r) - d) > 0) return 0; double a = getAngle(o2.o - o1.o);
double da = acos((o1.r*o1.r + d*d - o2.r*o2.r) / (2*o1.r*d)); Point p1 = o1.point(a-da), p2 = o1.point(a+da); sol.push_back(p1);
if (p1 == p2) return 1;
sol.push_back(p2);
return 2;
} /* 过定点作圆的切线 */
int getTangents (Point p, Circle o, Vector* v) {
Vector u = o.o - p;
double d = getLength(u);
if (d < o.r) return 0;
else if (dcmp(d - o.r) == 0) {
v[0] = rotate(u, pi / 2);
return 1;
} else {
double ang = asin(o.r / d);
v[0] = rotate(u, -ang);
v[1] = rotate(u, ang);
return 2;
}
} /* a[i] 和 b[i] 各自是第i条切线在O1和O2上的切点 */
int getTangents (Circle o1, Circle o2, Point* a, Point* b) {
int cnt = 0;
if (o1.r < o2.r) { swap(o1, o2); swap(a, b); }
double d2 = getLength(o1.o - o2.o); d2 = d2 * d2;
double rdif = o1.r - o2.r, rsum = o1.r + o2.r;
if (d2 < rdif * rdif) return 0;
if (dcmp(d2) == 0 && dcmp(o1.r - o2.r) == 0) return -1; double base = getAngle(o2.o - o1.o);
if (dcmp(d2 - rdif * rdif) == 0) {
a[cnt] = o1.point(base); b[cnt] = o2.point(base); cnt++;
return cnt;
} double ang = acos( (o1.r - o2.r) / sqrt(d2) );
a[cnt] = o1.point(base+ang); b[cnt] = o2.point(base+ang); cnt++;
a[cnt] = o1.point(base-ang); b[cnt] = o2.point(base-ang); cnt++; if (dcmp(d2 - rsum * rsum) == 0) {
a[cnt] = o1.point(base); b[cnt] = o2.point(base); cnt++;
} else if (d2 > rsum * rsum) {
double ang = acos( (o1.r + o2.r) / sqrt(d2) );
a[cnt] = o1.point(base+ang); b[cnt] = o2.point(base+ang); cnt++;
a[cnt] = o1.point(base-ang); b[cnt] = o2.point(base-ang); cnt++;
}
return cnt;
} /* 三点确定外切圆 */
Circle CircumscribedCircle(Point p1, Point p2, Point p3) {
double Bx = p2.x - p1.x, By = p2.y - p1.y;
double Cx = p3.x - p1.x, Cy = p3.y - p1.y;
double D = 2 * (Bx * Cy - By * Cx);
double cx = (Cy * (Bx * Bx + By * By) - By * (Cx * Cx + Cy * Cy)) / D + p1.x;
double cy = (Bx * (Cx * Cx + Cy * Cy) - Cx * (Bx * Bx + By * By)) / D + p1.y;
Point p = Point(cx, cy);
return Circle(p, getLength(p1 - p));
} /* 三点确定内切圆 */
Circle InscribedCircle(Point p1, Point p2, Point p3) {
double a = getLength(p2 - p3);
double b = getLength(p3 - p1);
double c = getLength(p1 - p2);
Point p = (p1 * a + p2 * b + p3 * c) / (a + b + c);
return Circle(p, getDistanceToLine(p, p1, p2));
} /* 三角形一顶点为圆心 */
double getPublicAreaToTriangle (Circle O, Point a, Point b) {
if (dcmp((a-O.o)*(b-O.o)) == 0) return 0;
int sig = 1;
double da = getPLength(O.o-a), db = getPLength(O.o-b);
if (dcmp(da-db) > 0) {
swap(da, db);
swap(a, b);
sig = -1;
} double t1, t2;
vector<Point> sol;
int n = getLineCircleIntersection(a, b, O, t1, t2, sol); if (dcmp(da-O.r*O.r) <= 0) {
if (dcmp(db-O.r*O.r) <= 0) return getDirArea(O.o, a, b) * sig; int k = 0;
if (getPLength(sol[0]-b) > getPLength(sol[1]-b)) k = 1; double ret = getArea(O.o, a, sol[k]) + O.getArea(getAngle(sol[k]-O.o, b-O.o));
double tmp = (a-O.o)*(b-O.o);
return ret * sig * dcmp(tmp);
} double d = getDistanceToSegment(O.o, a, b);
if (dcmp(d-O.r) >= 0) {
double ret = O.getArea(getAngle(a-O.o, b-O.o));
double tmp = (a-O.o)*(b-O.o);
return ret * sig * dcmp(tmp);
} double k1 = O.r / getLength(a - O.o), k2 = O.r / getLength(b - O.o);
Point p = O.o + (a - O.o) * k1, q = O.o + (b - O.o) * k2;
double ret1 = O.getArea(getAngle(p-O.o, q-O.o));
double ret2 = O.getArea(getAngle(sol[0]-O.o, sol[1]-O.o)) - getArea(O.o, sol[0], sol[1]);
double ret = (ret1 - ret2), tmp = (a-O.o)*(b-O.o);
return ret * sig * dcmp(tmp);
} double getPublicAreaToPolygon (Circle O, Point* p, int n) {
if (dcmp(O.r) == 0) return 0;
double area = 0;
for (int i = 0; i < n; i++) {
int u = (i + 1) % n;
area += getPublicAreaToTriangle(O, p[i], p[u]);
}
return fabs(area);
}
};
//double getDistanceToSegment (Point p, Point a, Point b); using namespace Linear; const int maxn = 2005;
const double inf = 100000; int N;
double L;
Point S[maxn], E[maxn]; struct Seg {
int d;
double x;
Seg (double x = 0, int d = 0): x(x), d(d) {}
bool operator < (const Seg& u) const { return dcmp(x- u.x) < 0 || (dcmp(x - u.x) == 0 && d < u.d); }
}; double getDistance (int idx, double l, double r) {
//while (dcmp(r - l) > 0) {
while (r - l >= eps) {
double ll = (l + r) / 2;
double rr = (ll + r) / 2;
double d1 = getDistanceToSegment(Point(ll, 0), S[idx], E[idx]);
double d2 = getDistanceToSegment(Point(rr, 0), S[idx], E[idx]);
if (d1 < d2)
r = rr - eps;
else
l = ll + eps;
}
return l;
} double handle1 (int idx, double l, double r, double d) {
while (dcmp(r - l) > 0) {
double mid = (l + r) / 2;
if (getDistanceToSegment(Point(mid, 0), S[idx], E[idx]) > d)
l = mid;
else
r = mid;
}
return (l + r) / 2;
} double handle2 (int idx, double l, double r, double d) {
while (dcmp(r - l) > 0) {
double mid = (l + r) / 2;
if (getDistanceToSegment(Point(mid, 0), S[idx], E[idx]) > d)
r = mid;
else
l = mid;
}
return (l + r) / 2;
} bool judge (double r) {
vector<Seg> g; for (int i = 0; i < N; i++) {
double s = getDistance(i, 0, L);
if (dcmp(getDistanceToSegment(Point(s, 0), S[i], E[i]) - r) >= 0) {
g.push_back(Seg(0, 1));
g.push_back(Seg(L, -1));
continue;
} if (dcmp(getDistanceToSegment(Point(0, 0), S[i], E[i]) - r) >= 0) {
double d = handle1 (i, 0, s, r);
g.push_back(Seg(0, 1));
g.push_back(Seg(d, -1));
} if (dcmp(getDistanceToSegment(Point(L, 0), S[i], E[i]) - r) >= 0) {
double d = handle2(i, s, L, r);
g.push_back(Seg(d, 1));
g.push_back(Seg(L, -1));
}
} sort(g.begin(), g.end());
int c = 0;
for (int i = 0; i < g.size(); i++) {
c += g[i].d;
if (c >= N)
return true;
}
return false;
} int main () {
int cas;
scanf("%d", &cas);
while (cas--) {
scanf("%d%lf", &N, &L);
for (int i = 0; i < N; i++)
S[i].read(), E[i].read(); double l = 0, r = inf;
while (dcmp(r-l) > 0) {
double mid = (l + r) / 2;
if (judge(mid)) l = mid;
else r = mid;
}
printf("%.3lf\n", (l + r) / 2);
}
return 0;
}
uva 1463 - Largest Empty Circle on a Segment(二分+三分+几何)的更多相关文章
- UVALive 4818 - Largest Empty Circle on a Segment (计算几何)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- 4818 Largest Empty Circle on a Segment (几何+二分)
ACM-ICPC Live Archive 挺水的一道题,直接二分圆的半径即可.1y~ 类似于以前半平面交求核的做法,假设半径已经知道,我们只需要求出线段周围哪些位置是不能放置圆心的即可.这样就转换为 ...
- UVa 10667 - Largest Block
题目大意:这个也是和UVa 836 - Largest Submatrix差不多,修改一下数据就可以套用代码的. #include <cstdio> #include <cstrin ...
- UVa 836 - Largest Submatrix
题目:给你一个n*n的01矩阵,求里面最大的1组成的矩形的米娜及. 分析:dp.单调队列.UVa 1330同题,仅仅是输入格式变了. 我们将问题分解成最大矩形.即求解以k行为底边的图形中的最大矩形.然 ...
- uva 1506 Largest Rectangle in a Histogram
Largest Rectangle in a Histogram http://acm.hdu.edu.cn/showproblem.php?pid=1506 Time Limit: 2000/100 ...
- UVa 11466 - Largest Prime Divisor
題目:給你一個整數n(不超過14位).求出他的最大的素數因子.假设仅仅有一個素數因子輸出-1. 分析:數論. 直接打表計算10^7內的全部素數因子,然後用短除法除n.記錄最大的因子就可以. 假设最後下 ...
- HDU 1506 Largest Rectangle in a Histogram set+二分
Largest Rectangle in a Histogram Problem Description: A histogram is a polygon composed of a sequenc ...
- UVA 11610 Reverse Prime (数论+树状数组+二分,难题)
参考链接http://blog.csdn.net/acm_cxlove/article/details/8264290http://blog.csdn.net/w00w12l/article/deta ...
- uva 10983 Buy one, get the rest free 二分判定层次图
二分枚举租用飞机的最大花费,然后用小于等于最大花费的边构建层次图(依据时间) 构图思路: 利用二元组(x,y)表示 x天y城市 1. e天有飞机从a城市飞到b城市,能够承载x人,则添加单向边 ( ...
随机推荐
- 学习——HTML5
HTML5多用于手机页面制作,因为PC版浏览器大多不兼容,可以通过下面网站查看HTML5浏览器兼容情况: http://www.caniuse.com/#index 一.语义化标签 1.<hea ...
- 洛谷——P1027 Car的旅行路线
https://www.luogu.org/problem/show?pid=1027#sub 题目描述 又到暑假了,住在城市A的Car想和朋友一起去城市B旅游.她知道每个城市都有四个飞机场,分别位于 ...
- [Javascript] Compose multiple functions for new behavior in JavaScript
In this lesson you will create a utility function that allows you to quickly compose behavior of mul ...
- CF 843 A. Sorting by Subsequences
A. Sorting by Subsequences You are given a sequence a1, a2, ..., an consisting of different integers ...
- mysql存储emoji表情报错处理,qq互联mysql存储昵称中带表情的数据时报错。
前言 做qq互联登录时发现一个问题,如果qq昵称中有表情时存入mysql数据库会报错. java.sql.SQLException: Incorrect string value: "ð&q ...
- 压状态bfs
一般地图很小,状态不多,可以装压或者hash,构造压缩或hash的函数,构造还原地图的函数,然后就无脑bfs(感觉就是SPFA) 题目: 1.玩具游戏:二进制压缩状态 #include<cstd ...
- diff---比较文件不同
diff命令在最简单的情况下,比较给定的两个文件的不同.如果使用“-”代替“文件”参数,则要比较的内容将来自标准输入.diff命令是以逐行的方式,比较文本文件的异同处.如果该命令指定进行目录的比较,则 ...
- iOS报错 -pie can only be used when targeting iOS 4.2 or later
近期,使用师兄的project时.突然报错之前没发现这个错误.信息例如以下: ld: -pie can only be used when targeting iOS 4.2 or later cla ...
- [Javascript] Classify JSON text data with machine learning in Natural
In this lesson, we will learn how to train a Naive Bayes classifier and a Logistic Regression classi ...
- UDP深入骨髓【转】
从UDP的”连接性”说起–告知你不为人知的UDP 原文地址:http://bbs.utest.qq.com/?p=631 很早就计划写篇关于UDP的文章,尽管UDP协议远没TCP协议那么庞大.复杂,但 ...