POJ 1973

这道题以前做过的。今儿重做一次。由于每个程序员要么做A,要么做B,可以联想到0/1背包(谢谢N巨)。这样,可以设状态

dp[i][j]为i个程序员做j个A项目同时,最多可做多少个B项目。枚举最后一个程序员做多少个A项目进行转移(0/1)。

dp[i][j]=max{dp[i-1][k]+(time-(j-k)*a[i])/b[i]}。于是,二分时间time进行判定即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std; int dp[110][110];
int a[110],b[110];
int n,m; bool slove(int time){
memset(dp,-1,sizeof(dp));
for(int i=0;i<=m;i++){
if(time-i*a[1]<0) continue;
dp[1][i]=(time-i*a[1])/b[1];
}
for(int i=2;i<=n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k<=j;k++){
if(dp[i-1][k]<0||time-(j-k)*a[i]<0) continue;
dp[i][j]=max(dp[i][j],dp[i-1][k]+(time-(j-k)*a[i])/b[i]);
}
}
}
//bool flag=false;
for(int i=0;i<=n;i++){
if(dp[i][m]>=m) return true;
}
return false;
} int main(){
int T;
scanf("%d",&T);
while(T--){
int l=0,r=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i],&b[i]);
r+=(a[i]*m+b[i]*m);
}
int ans=100000000;
while(l<=r){
int mid=(l+r)>>1;
if(slove(mid)){
ans=mid;
r=mid-1;
}
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
}

  

POJ 1180

开始时设了二维的数组。一看范围,就知道不行了。。

可以很容易就看出是DP了。可以倒过来设状态dp[i]表示加入i任务,从i任务到n任务完成所需要的时间。

dp[i]=min{dp[j]+(s+tsum[i]-tsum[j])*fsum[i]}//i之后的第一个分组是从j开始,枚举。

这样还不足够。可以用斜率来优化。假设j<p。如果对于决策i,j更优于p,则有dp[j]+(s+tsum[i]-tsum[j])*fsum[i]<dp[p]+(s+tsum[i]-tsum[j])*fsum[i]。化简有

dp[j]-dp[p]<(tsum[j]-tsum[p])*fsum[i]。可以看到是斜率k=g[j,p]=(dp[j]-dp[p])/(tsum[j]-tsum[p])<fsum[i],j优于p。

对于k<j<p。如果有g[k,j]<g[j,p]。则j必定是可以不要的。因为当g[k,j]<s时,明显k优于j。否则g[k,j]>s,有s<g[k,j]<g[j,p]。说明,k不优于j,j不优于p。

于是,j是可以不要的。

斜率减少。因而可以去掉j。在这里,我们要维护的是斜率的下凸,如:g[k,j]>g[j,p]。这样,对于j点,如果j点可选,则其前面的点均可以不需要了。因为斜率是下凸,会直到某个斜率大于fsum[i],才会选到最优。

用一个单调队列维护即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#define LL __int64
using namespace std; int t[10010],f[10010];
LL ts[10010],fs[10010];
int que[10010],head,tail;
LL dp[10010]; int main(){
int n,s;
while(scanf("%d",&n)!=EOF){
head=tail=0;
scanf("%d",&s);
for(int i=1;i<=n;i++){
scanf("%d%d",&t[i],&f[i]);
}
dp[n+1]=0; ts[n+1]=fs[n+1]=0;
for(int i=n;i>=1;i--){
ts[i]=(ts[i+1]+t[i]);
fs[i]=(fs[i+1]+f[i]);
}
head=tail=0;
dp[n+1]=0;
que[tail++]=n+1;
dp[n]=(s+ts[n])*fs[n];
que[tail++]=n;
for(int i=n-1;i>=1;i--){
while(head<tail-1&&dp[que[head+1]]-dp[que[head]]<=(ts[que[head+1]]-ts[que[head]])*fs[i])
head++;
dp[i]=dp[que[head]]+(s+ts[i]-ts[que[head]])*fs[i];
while(head+1<tail&&(dp[i]-dp[que[tail-1]])*(ts[que[tail-1]]-ts[que[tail-2]])<=(dp[que[tail-1]]-dp[que[tail-2]])*(ts[i]-ts[que[tail-1]]))
tail--;
que[tail++]=i;
}
printf("%I64d\n",dp[1]);
} return 0;
}

  

任务调度分配题两道 POJ 1973 POJ 1180(斜率优化复习)的更多相关文章

  1. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  2. 三分题两道:lightoj1146 Closest Distance、lightoj1240 Point Segment Distance (3D)

    lightoj1146 Two men are moving concurrently, one man is moving from A to B and other man is moving f ...

  3. poj 1180 斜率优化dp

    这个题目要是顺着dp的话很难做,但是倒着推就很容易退出比较简单的关系式了. dp[i]=min(dp[u]+(sum[u-1]-sum[i-1]+s)*f[i]);dp[i]代表从i到结尾需要花费的代 ...

  4. POJ 3709 K-Anonymous Sequence - 斜率优化dp

    描述 给定一个数列 $a$, 分成若干段,每段至少有$k$个数, 将每段中的数减少至所有数都相同, 求最小的变化量 题解 易得到状态转移方程 $F_i = \min(F_j  + sum_i - su ...

  5. POJ 1180 斜率优化DP(单调队列)

    Batch Scheduling Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4347   Accepted: 1992 ...

  6. 穷举(四):POJ上的两道穷举例题POJ 1411和POJ 1753

    下面给出两道POJ上的问题,看如何用穷举法解决. [例9]Calling Extraterrestrial Intelligence Again(POJ 1411) Description A mes ...

  7. 『ACM C++』Virtual Judge | 两道基础题 - The Architect Omar && Malek and Summer Semester

    这几天一直在宿舍跑PY模型,学校的ACM寒假集训我也没去成,来学校的时候已经18号了,突然加进去也就上一天然后排位赛了,没学什么就去打怕是要被虐成渣,今天开学前一天,看到最后有一场大的排位赛,就上去试 ...

  8. 两道人数多,课程少,query多的题

    #每天进步一点点# 来两道很相似的题目~ (智商啊智商.....) hihoCoder #1236:Scores (简单的分桶法+bitset) 2015 Beijing Online的最后一题.题目 ...

  9. FJOI2020 的两道组合计数题

    最近细品了 FJOI2020 的两道计数题,感觉抛开数据范围不清还卡常不谈里面的组合计数技巧还是挺不错的.由于这两道题都基于卡特兰数的拓展,所以我们把它们一并研究掉. 首先是 D1T3 ,先给出简要题 ...

随机推荐

  1. C# System.Environment.GetFolderPath的使用 [转]

    原文:https://blog.csdn.net/yongyong521/article/details/75105853 获取系统文件目录 string strPath = Environment. ...

  2. Appium Appium 链接夜神模拟器

    在此之前,已经安装Appium,参考第一部分在 Windows7 搭建 Appium (一) https://testerhome.com/topics/8004 第一步安装Android开发环境 下 ...

  3. 下载谷歌地图封锁IP解决办法

    采用重新拨号,动态改变IP的方式.可以使用软件<易好用IP自动更换软件>

  4. 实现strcpy

    #include <stddef.h> char* strcpy(char* dest, const char* src) { if (dest == NULL || src == NUL ...

  5. 升级Xcode或 MacOS编译iOS出现resource fork, Finder information, or similar detritus not allowed

    很久没有在网上留下足迹了,冒个泡吧 最近升级了Xcode,编译之前的一个项目是出现问题,问题结尾如下: resource fork, Finder information, or similar de ...

  6. html5——DOM扩展

    元素获取 1.document.getElementsByClassName ('class') 通过类名获取元素,以类数组形式存在. 2.document.querySelector(‘div’) ...

  7. [问题记录]-技术学习-RocketMQ-全球集群部署问题

    一:问题场景 公司在部署全球的RocketMQ的时候,遇到亚洲区的服务器往欧洲区的RocketMQ发送消息失败的情况. 总共有出现两个问题 1:No Topic Route Info org.apac ...

  8. Nginx 反向代理并缓存及缓存清除

    Nginx 反向代理并缓存及缓存清除 原文地址:http://www.cnblogs.com/caoguo/p/5012447.html 一. Nginx 配置 #user nobody; worke ...

  9. ajax请求参数的格式

    因为多写了一个contentType=“text/html”,请求的时候,参数总是转成了url&拼接的格式,导致请求不成功,调试了老半天 这个也是奇怪,为什么post只能接收json格式的数据 ...

  10. std::vector遍历

    std::vector是我在标准库中实用最频繁的容器.总结一下在遍历和创建vector时需要注意的一些地方. 在不考虑线程安全问题的前提下,在C++11中有五种遍历方式. 方式一 for (size_ ...