POJ 1973

这道题以前做过的。今儿重做一次。由于每个程序员要么做A,要么做B,可以联想到0/1背包(谢谢N巨)。这样,可以设状态

dp[i][j]为i个程序员做j个A项目同时,最多可做多少个B项目。枚举最后一个程序员做多少个A项目进行转移(0/1)。

dp[i][j]=max{dp[i-1][k]+(time-(j-k)*a[i])/b[i]}。于是,二分时间time进行判定即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std; int dp[110][110];
int a[110],b[110];
int n,m; bool slove(int time){
memset(dp,-1,sizeof(dp));
for(int i=0;i<=m;i++){
if(time-i*a[1]<0) continue;
dp[1][i]=(time-i*a[1])/b[1];
}
for(int i=2;i<=n;i++){
for(int j=0;j<=m;j++){
for(int k=0;k<=j;k++){
if(dp[i-1][k]<0||time-(j-k)*a[i]<0) continue;
dp[i][j]=max(dp[i][j],dp[i-1][k]+(time-(j-k)*a[i])/b[i]);
}
}
}
//bool flag=false;
for(int i=0;i<=n;i++){
if(dp[i][m]>=m) return true;
}
return false;
} int main(){
int T;
scanf("%d",&T);
while(T--){
int l=0,r=0;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%d%d",&a[i],&b[i]);
r+=(a[i]*m+b[i]*m);
}
int ans=100000000;
while(l<=r){
int mid=(l+r)>>1;
if(slove(mid)){
ans=mid;
r=mid-1;
}
else l=mid+1;
}
printf("%d\n",ans);
}
return 0;
}

  

POJ 1180

开始时设了二维的数组。一看范围,就知道不行了。。

可以很容易就看出是DP了。可以倒过来设状态dp[i]表示加入i任务,从i任务到n任务完成所需要的时间。

dp[i]=min{dp[j]+(s+tsum[i]-tsum[j])*fsum[i]}//i之后的第一个分组是从j开始,枚举。

这样还不足够。可以用斜率来优化。假设j<p。如果对于决策i,j更优于p,则有dp[j]+(s+tsum[i]-tsum[j])*fsum[i]<dp[p]+(s+tsum[i]-tsum[j])*fsum[i]。化简有

dp[j]-dp[p]<(tsum[j]-tsum[p])*fsum[i]。可以看到是斜率k=g[j,p]=(dp[j]-dp[p])/(tsum[j]-tsum[p])<fsum[i],j优于p。

对于k<j<p。如果有g[k,j]<g[j,p]。则j必定是可以不要的。因为当g[k,j]<s时,明显k优于j。否则g[k,j]>s,有s<g[k,j]<g[j,p]。说明,k不优于j,j不优于p。

于是,j是可以不要的。

斜率减少。因而可以去掉j。在这里,我们要维护的是斜率的下凸,如:g[k,j]>g[j,p]。这样,对于j点,如果j点可选,则其前面的点均可以不需要了。因为斜率是下凸,会直到某个斜率大于fsum[i],才会选到最优。

用一个单调队列维护即可。

#include <iostream>
#include <cstdio>
#include <algorithm>
#define LL __int64
using namespace std; int t[10010],f[10010];
LL ts[10010],fs[10010];
int que[10010],head,tail;
LL dp[10010]; int main(){
int n,s;
while(scanf("%d",&n)!=EOF){
head=tail=0;
scanf("%d",&s);
for(int i=1;i<=n;i++){
scanf("%d%d",&t[i],&f[i]);
}
dp[n+1]=0; ts[n+1]=fs[n+1]=0;
for(int i=n;i>=1;i--){
ts[i]=(ts[i+1]+t[i]);
fs[i]=(fs[i+1]+f[i]);
}
head=tail=0;
dp[n+1]=0;
que[tail++]=n+1;
dp[n]=(s+ts[n])*fs[n];
que[tail++]=n;
for(int i=n-1;i>=1;i--){
while(head<tail-1&&dp[que[head+1]]-dp[que[head]]<=(ts[que[head+1]]-ts[que[head]])*fs[i])
head++;
dp[i]=dp[que[head]]+(s+ts[i]-ts[que[head]])*fs[i];
while(head+1<tail&&(dp[i]-dp[que[tail-1]])*(ts[que[tail-1]]-ts[que[tail-2]])<=(dp[que[tail-1]]-dp[que[tail-2]])*(ts[i]-ts[que[tail-1]]))
tail--;
que[tail++]=i;
}
printf("%I64d\n",dp[1]);
} return 0;
}

  

任务调度分配题两道 POJ 1973 POJ 1180(斜率优化复习)的更多相关文章

  1. POJ P2318 TOYS与POJ P1269 Intersecting Lines——计算几何入门题两道

    rt,计算几何入门: TOYS Calculate the number of toys that land in each bin of a partitioned toy box. Mom and ...

  2. 三分题两道:lightoj1146 Closest Distance、lightoj1240 Point Segment Distance (3D)

    lightoj1146 Two men are moving concurrently, one man is moving from A to B and other man is moving f ...

  3. poj 1180 斜率优化dp

    这个题目要是顺着dp的话很难做,但是倒着推就很容易退出比较简单的关系式了. dp[i]=min(dp[u]+(sum[u-1]-sum[i-1]+s)*f[i]);dp[i]代表从i到结尾需要花费的代 ...

  4. POJ 3709 K-Anonymous Sequence - 斜率优化dp

    描述 给定一个数列 $a$, 分成若干段,每段至少有$k$个数, 将每段中的数减少至所有数都相同, 求最小的变化量 题解 易得到状态转移方程 $F_i = \min(F_j  + sum_i - su ...

  5. POJ 1180 斜率优化DP(单调队列)

    Batch Scheduling Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4347   Accepted: 1992 ...

  6. 穷举(四):POJ上的两道穷举例题POJ 1411和POJ 1753

    下面给出两道POJ上的问题,看如何用穷举法解决. [例9]Calling Extraterrestrial Intelligence Again(POJ 1411) Description A mes ...

  7. 『ACM C++』Virtual Judge | 两道基础题 - The Architect Omar && Malek and Summer Semester

    这几天一直在宿舍跑PY模型,学校的ACM寒假集训我也没去成,来学校的时候已经18号了,突然加进去也就上一天然后排位赛了,没学什么就去打怕是要被虐成渣,今天开学前一天,看到最后有一场大的排位赛,就上去试 ...

  8. 两道人数多,课程少,query多的题

    #每天进步一点点# 来两道很相似的题目~ (智商啊智商.....) hihoCoder #1236:Scores (简单的分桶法+bitset) 2015 Beijing Online的最后一题.题目 ...

  9. FJOI2020 的两道组合计数题

    最近细品了 FJOI2020 的两道计数题,感觉抛开数据范围不清还卡常不谈里面的组合计数技巧还是挺不错的.由于这两道题都基于卡特兰数的拓展,所以我们把它们一并研究掉. 首先是 D1T3 ,先给出简要题 ...

随机推荐

  1. python自动化测试学习笔记-4内置函数,处理json

    函数.全局变量 写代码时注意的几点事项: 1.一般写代码的时候尽量少用或不用全局变量,首先全局变量不安全,大家协作的情况下,代码公用容易被篡改,其次全局变量会一直占用系统内容. 2.函数里如果有多个r ...

  2. JAVA小记(一)

    java中向上转型.向下转型.内部类中所需注意的问题: 向上转型与向下转型: 举个例子:有2个类,Father是父类,Son类继承自Father. Father f1 = new Son();   / ...

  3. Spring Cloud (11) Hystrix-监控聚合监控

    上一篇利用Hystrix Dashboard去监控断路器的Hystrix command,当我们有很多服务的时候,就需要聚合所有服务的Hystrix Dashboard数据了,这就需要Hystrix ...

  4. HDU3949 XOR(线性基第k小)

    Problem Description XOR is a kind of bit operator, we define that as follow: for two binary base num ...

  5. jQuery与js的区别,并有基本语法详解,

    通过过一下对比,我们能很清楚的发现jquery与js的区别,运用jquery能大量减少代码量,不过js里面关于时间的setinterval和settimeout只能用js <script src ...

  6. 移动web——touch事件应用

    基本概况 1.touch事件在移动端被用来代替click事件,因为click事件的触发会延迟影响了用户体验 2.touch事件还可以与translate构成吸附效果 3.现行有一种排版方式是左边宽度是 ...

  7. JS——scroll封装

    DTD未声明:document.body.scrollTop DTD已声明:document.documentElement.scrollTop 火狐谷歌IE9:window.pageYOffset ...

  8. python 分割文件、组合文件

    import glob big_file = open('index.sql', 'rb') bak_file = 'index_bak' i = 1 while True: chunk = big_ ...

  9. 实验1 C++函数

    一.实验目的: 掌握定义函数的方法.函数实参与形参的对应关系以及“值传递”的方式. 熟悉函数的嵌套调用和递归调用的方法. 熟悉全局变量.局部变量概念和使用方式. 二.实验内容: 运行调试第2章编程示例 ...

  10. Python元类(metaclass)以及元类实现单例模式

    这里将一篇写的非常好的文章基本照搬过来吧,这是一篇在Stack overflow上很热的帖子,我看http://blog.jobbole.com/21351/这篇博客对其进行了翻译. 一.理解类也是对 ...