ACM:动态规划,01背包问题
题目:
有n件物品和一个容量为C的背包。(每种物品均仅仅有一件)第i件物品的体积是v[i],重量是w[i]。选一些物品装到这个背包中,使得背包内物品在整体积不超过C的前提下重量尽量大。
解法:两种思路:
第一种:d(i, j)表示“把第i,i+1,i+2,...n个物品装到容量为j的背包中的接下来的最大总重量”。
d(i, j) = max{d(i+1, j), d(i+1, j-v[i])+w[i]} 前面一项表示不放第i个物品,后面一项表示放第i个物品。
然后取两者之中最大的那个。
#include <iostream>
#include <string>
using namespace std; const int MAXN = 10000;
int n, C, v[MAXN], w[MAXN];
int d[MAXN][MAXN]; //d(i, j)表示“把第i,i+1,i+2,...n个物品装到容量为j的背包中的接下来的最大总重量” int main() {
cin >> n >> C;
for(int i = 0; i < n; ++i) {
cin >> v[i] >> w[i];
}
memset(d, 0, sizeof(d));
for(int i = n; i >= 1; --i) {
for(int j = 0; j <= C; ++j) {
d[i][j] = (i == n ? 0 : d[i+1][j]); //不放第i个物品
if(j >= v[i]) d[i][j] = max(d[i][j], d[i+1][j-v[i]]+w[i]); //不放第i个物品跟放第i个物品之间的最大值
}
}
cout << d[1][C] << endl;
return 0;
}
另外一种:d(i, j)表示“把前 i 个物品装到容量为 j 的背包中的最大总重量”。
d(i, j) = max{d(i-1, j), d(i-1, j-v[i])+w[i]} 前面一项表示不放第i个物品。后面一项表示放第i个物品。
然后取两者之中最大的那个。
#include <iostream>
#include <string>
using namespace std; const int MAXN = 10000;
int n, C;
int d[MAXN][MAXN]; //d(i, j)表示“把前 i 个物品装到容量为 j 的背包中的最大总重量”。 int main() {
cin >> n >> C;
memset(d, 0, sizeof(d));
int v, w;
for(int i = 1; i <= n; ++i) {
cin >> v >> w;
for(int j = 0; j <= C; ++j) {
d[i][j] = (i == 1 ? 0 : d[i-1][j]); //第i个没放进去
if(j >= v) d[i][j] = max(d[i][j], d[i-1][j-v]+w); //不放第i个物品跟放第i个物品之间的最大值
}
}
cout << d[n][C] << endl;
return 0;
}
ACM:动态规划,01背包问题的更多相关文章
- 动态规划入门-01背包问题 - poj3624
2017-08-12 18:50:13 writer:pprp 对于最基础的动态规划01背包问题,都花了我好长时间去理解: poj3624是一个最基本的01背包问题: 题意:给你N个物品,给你一个容量 ...
- c语言数据结构:01背包问题-------动态规划
两天的时间都在学习动态规划:小作业(01背包问题:) 数据结构老师布置的这个小作业还真是让人伤头脑,自己实在想不出来了便去网上寻找讲解,看到一篇不错的文章: http://www.cnblogs.co ...
- PAT1048. Find Coins(01背包问题动态规划解法)
问题描述: Eva loves to collect coins from all over the universe, including some other planets like Mars. ...
- 01背包问题(动态规划)python实现
01背包问题(动态规划)python实现 在01背包问题中,在选择是否要把一个物品加到背包中.必须把该物品加进去的子问题的解与不取该物品的子问题的解进行比較,这样的方式形成的问题导致了很多重叠子问题, ...
- 动态规划专题 01背包问题详解 HDU 2546 饭卡
我以此题为例,详细分析01背包问题,希望该题能够为大家对01背包问题的理解有所帮助,对这篇博文有什么问题可以向我提问,一同进步^_^ 饭卡 Time Limit: 5000/1000 MS (Java ...
- C++动态规划求解0-1背包问题
问题描述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问:应该如何选择装入背包的物品,是的装入背包中物品的总价值最大? 细节须知: 暂无. 算法原理: a.最优子结构性质 ...
- 0-1背包问题——动态规划求解【Python】
动态规划求解0-1背包问题: 问题:背包大小 w,物品个数 n,每个物品的重量与价值分别对应 w[i] 与 v[i],求放入背包中物品的总价值最大. 动态规划核心:计算并存储小问题的最优解,并将这些最 ...
- Codeforces 2016 ACM Amman Collegiate Programming Contest A. Coins(动态规划/01背包变形)
传送门 Description Hasan and Bahosain want to buy a new video game, they want to share the expenses. Ha ...
- 动态规划(DP),0-1背包问题
题目链接:http://poj.org/problem?id=3624 1.p[i][j]表示,背包容量为j,从i,i+1,i+2,...,n的最优解. 2.递推公式 p[i][j]=max(p[i+ ...
- 【ACM】Knapsack without repetition - 01背包问题
无界背包中的状态及状态方程已经不适用于01背包问题,那么我们来比较这两个问题的不同之处,无界背包问题中同一物品可以使用多次,而01背包问题中一个背包仅可使用一次,区别就在这里.我们将 K(ω)改为 K ...
随机推荐
- class的基本操作方法
JavaScript语言中,生成实例对象的传统方法是通过构造函数 function Point(x,y){ this.x = x; this.y = y; } Point.prototype.toSt ...
- 表单标签 fieldset legent
书写表单时可以提供简单样式的标签 <fieldset> <legent></legent> <input type="text" > ...
- linux gnome kde点滴
2014.12.08 下面切换的方法对于fedora 17没有效果,对于fedora 17, 要使用system-switch-displaymanager,出现 点击相应的选项,然后就进入相应的启动 ...
- SICP 习题 (1.41)解题总结
SICP 习题1.41 看似和周边的题目没有关系,突然叫我们去定义一个叫double的过程,事实上这道题的核心还是高阶函数. 题目要求我们定义一个过程double,它以一个过程作为參数,这个作为參数的 ...
- Linux就该这么学 20181002(第二章基础命令)
参考链接https://www.linuxprobe.com/ 忘记密码操作 启动页面 默认按e 在linux16行后空格 rd.break ctrl + x mount -o remount,rw ...
- MYSQL5.6/5.7 数据库密码丢失问题处理(需重启)
文章结构图: 一.MYSQL5.6密码丢失 1. 强行停止MYSQL 丢失超级管理用户ROOT的密码是致命的,可以通过--skip-grant-tables参数来跳过权限表. 停止MYSQL,强行杀 ...
- HTML5与CSS3权威指南之CSS3学习记录
title: HTML5与CSS3权威指南之CSS3学习记录 toc: true date: 2018-10-14 00:06:09 学习资料--<HTML5与CSS3权威指南>(第3版) ...
- calender怎么获取每周的周日(给每周的周日特定时间点设置定时)
获取每周的周日 //如果是周日,特殊处理.老外的周日-周六为一周 calendarTemp.add(Calendar.WEEK_OF_MONTH,1); calendarTemp.set(Calend ...
- localStorage、sessionStorage的区别
1.localStorage生命周期是永久的, sessionStorage生命周期为当前窗口或标签页,一旦窗口或标签页被永久关闭了,那么所有通过sessionStorage存储的数据也就被清空了. ...
- Android ViewPager 动画效果
找到个不错的开源项目:https://github.com/jfeinstein10/JazzyViewPager Android ViewPager 动画效果