Redundant Paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10798   Accepted: 4626

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular
path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only
travel on Official Paths when they move from one field to another. 



Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate
routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. 



There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R 



Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample: 



One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 

1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 

1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 

3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 

Every pair of fields is, in fact, connected by two routes. 



It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

下面解析来自:女神的博客

斌神博客上有个不错的总结:斌神的博客

大致题意:

为了保护放牧环境,避免牲畜过度啃咬同一个地方的草皮,牧场主决定利用不断迁移牲畜进行喂养的方法去保护牧草。然而牲畜在迁移过程中也会啃食路上的牧草,所以假设每次迁移都用同一条道路,那么该条道路相同会被啃咬过度而遭受破坏。

如今牧场主拥有F个农场。已知这些农场至少有一条路径连接起来(不一定是直接相连)。但从某些农场去另外一些农场。至少有一条路可通行。为了保护道路上的牧草,农场主希望再建造若干条道路,使得每次迁移牲畜时,至少有2种迁移途径,避免反复走上次迁移的道路。

已知当前有的R条道路。问农场主至少要新建造几条道路,才干满足要求?

解题思路:

“使得每次迁移牲畜时,至少有2种迁移途径,避免反复走上次迁移的道路。”就是说当吧F个农场看作点、路看作边构造一个无向图G时,图G不存在桥。

那么能够建立模型:

给定一个连通的无向图G,至少要加入几条边。才干使其变为双连通图。

当图G存在桥(割边)的时候,它必然不是双连通的。桥的两个端点必然分别属于图G的两个【边双连通分量】。一旦删除了桥,这两个【边双连通分量】必然断开,图G就不连通了。可是假设在两个【边双连通分量】之间再加入一条边。桥就不再是桥了。这两个【边双连通分量】之间也就是双连通了。



那么假设图G有多个【边双连通分量】呢?至少应该加入多少条边,才干使得随意两个【边双连通分量】之间都是双连通(也就是图G是双连通的)

1、 首先要找出图G的全部【边双连通分量】。

2、 把每个【边双连通分量】都看做一个点(即【缩点】)

3、 问题再次被转化为“至少在缩点树上添加多少条树边。使得这棵树变为一个双连通图”。

首先知道一条等式:

若要使得随意一棵树。在添加若干条边后。变成一个双连通图,那么

至少添加的边数 =( 这棵树总度数为1的结点数 + 1 )/ 2。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#define maxn 5010
#define maxm 20010
using namespace std; int n, m;
struct node {
int u, v, next;
};
node edge[maxm];
//缩点后形成树,每一个点的度数
int du[maxn];
int head[maxn], cnt;
int low[maxn], dfn[maxn];
//Belong数组的值是 1 ~ ebc_block
int Stack[maxn], Belong[maxn];
int ebc_block;//边双连通块数
int dfs_clock;
int top;//模拟栈的指针
bool Instack[maxn]; void init(){
cnt = 0;
memset(head, -1, sizeof(head));
} void addedge(int u, int v){
edge[cnt] = {u, v, head[u]};
head[u] = cnt++;
} void getmap(){
while(m--){
int a, b;
scanf("%d%d", &a, &b);
addedge(a, b);
addedge(b, a);
}
} void tarjan(int u, int pre){
int v;
low[u] = dfn[u] = ++dfs_clock;
Stack[top++] = u;
Instack[u] = true;
int have = 1;
for(int i = head[u]; i != -1; i = edge[i].next){
v = edge[i].v;
if(have && v == pre){//去重边
have = 0;
continue;
}
if(!dfn[v]){
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u]){
ebc_block++;
do{
v = Stack[--top];
Instack[v] = false;
Belong[v] = ebc_block;
}
while(v != u);
}
} void suodian(){
memset(du, 0, sizeof(du));
for(int i = 0; i < cnt; i += 2 ){
int u = Belong[edge[i].u];
int v = Belong[edge[i].v];
if(u != v)
du[u]++, du[v]++;
}
} void find(){
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(Instack, false, sizeof(Instack));
memset(Belong, 0, sizeof(Belong));
dfs_clock = 0;
ebc_block = 0;
top = 0;
tarjan(1, -1);//连通图
} void solve(){
int ans = 0;
if(ebc_block == 1){
printf("0\n");
return ;
}
for(int i = 1; i <= ebc_block; ++i)
if(du[i] == 1) ans++;
printf("%d\n", (ans + 1) / 2);
} int main (){
while(scanf("%d%d", &n, &m) != EOF){
init();
getmap();
find();
suodian();
solve();
}
return 0;
}

POJ 3177--Redundant Paths【无向图添加最少的边成为边双连通图 &amp;&amp; tarjan求ebc &amp;&amp; 缩点构造缩点树】的更多相关文章

  1. POJ 3177 Redundant Paths 无向图边双联通基础题

    题意: 给一个无向图,保证任意两个点之间有两条完全不相同的路径 求至少加多少边才能实现 题解: 得先学会一波tarjan无向图 桥的定义是:删除这条边之后该图不联通 一条无向边(u,v)是桥,当且仅当 ...

  2. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  3. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  4. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  5. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  6. POJ 3177——Redundant Paths——————【加边形成边双连通图】

    Redundant Paths Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  7. POJ 3177 Redundant Paths (tarjan边双连通分量)

    题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条pat ...

  8. POJ 3177 Redundant Paths POJ 3352 Road Construction

    这两题是一样的,代码完全一样. 就是给了一个连通图,问加多少条边可以变成边双连通. 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话,把双连通子图收缩为一个点,形成一颗树 ...

  9. POJ 3177 Redundant Paths(强连通分量)

    题目链接:http://poj.org/problem?id=3177 题目大意是一个无向图给你n个点m条边,让你求出最少加多少条边 可以让任意两个点相通两条及以上的路线(每条路线点可以重复,但是每条 ...

随机推荐

  1. linux udev 机制【转】

    本文转载自:http://blog.csdn.net/yyt8yyt8/article/details/8020154 1. Linux的热插拔事件由kernel通过中断发现(比如,USB设备插入系统 ...

  2. php建立简单的用户留言系统

    php建立简单的用户留言系统 样例 addMsg.php--添加留言页面 doAction.php--响应添加留言页面 . viewMsg.php--显示留言页面 目录结构 addMsg.php--添 ...

  3. CharSequence源码分析

    CharSequence是一个接口,表示一个char值的可读序列,此接口为多种char序列提供统一的.只读的通道.既然是接口,就不能通过new来进行赋值,只能通过以下方式赋值: CharSequenc ...

  4. linux系统下块设备驱动程序

    顾名思义,块设备驱动程序就是支持以块的方式进行读写的设备.块设备和字符设备最大的区别在于读写数据的基本单元不同.块设备读写数据的基本单元为块,例 如磁盘通常为一个sector,而字符设备的基本单元为字 ...

  5. 28. Implement strStr()[E]实现strStr()

    题目 Implement strStr(). Return the index of the first occurrence of needle in haystack, or -1 if need ...

  6. BZOJ 2140 Tarjan

    思路: 跟POJ有一道时限挺长的题一模一样  哦 POJ 1904 题解可以看这个(捂脸) http://blog.csdn.net/qq_31785871/article/details/52963 ...

  7. 同一sql程序执行比数据库执行慢

    最近项目发现同一个sql在java端执行比在数据库执行慢很多,原因可能是程序的sql参数类型与数据库字段的类型不一致.

  8. 使用BindingList来实现DataGridview数据源为list时的动态增删改

    当DataGridview的数据源list的时候,对list进行操作后重新绑定,数据并不会更新 使用BindingList能很好的解决这个问题(framework2.0新增) 例如,使用list时候的 ...

  9. python课程设计笔记(二)破冰基本语法

    python两种编程方式:交互式与文件式 交互式:语法练习,输一条运行一条 文件式:通用,执行一组语句 注释 #单行注释  ...XXXXX...多行注释 逻辑 没有大括号,按缩进确定逻辑——缩进格数 ...

  10. SEO规范(部分)

    1:尽量减少AJAX的使用搜索引擎无法检索ajax中的内容,也无法识别javascript代码. 2:拒绝iframe,frame标签iframe,frame会极大的阻碍搜索引擎爬取网站内容. 3:图 ...