Redundant Paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10798   Accepted: 4626

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular
path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only
travel on Official Paths when they move from one field to another. 



Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate
routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. 



There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R 



Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample: 



One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 

1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 

1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 

3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 

Every pair of fields is, in fact, connected by two routes. 



It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

下面解析来自:女神的博客

斌神博客上有个不错的总结:斌神的博客

大致题意:

为了保护放牧环境,避免牲畜过度啃咬同一个地方的草皮,牧场主决定利用不断迁移牲畜进行喂养的方法去保护牧草。然而牲畜在迁移过程中也会啃食路上的牧草,所以假设每次迁移都用同一条道路,那么该条道路相同会被啃咬过度而遭受破坏。

如今牧场主拥有F个农场。已知这些农场至少有一条路径连接起来(不一定是直接相连)。但从某些农场去另外一些农场。至少有一条路可通行。为了保护道路上的牧草,农场主希望再建造若干条道路,使得每次迁移牲畜时,至少有2种迁移途径,避免反复走上次迁移的道路。

已知当前有的R条道路。问农场主至少要新建造几条道路,才干满足要求?

解题思路:

“使得每次迁移牲畜时,至少有2种迁移途径,避免反复走上次迁移的道路。”就是说当吧F个农场看作点、路看作边构造一个无向图G时,图G不存在桥。

那么能够建立模型:

给定一个连通的无向图G,至少要加入几条边。才干使其变为双连通图。

当图G存在桥(割边)的时候,它必然不是双连通的。桥的两个端点必然分别属于图G的两个【边双连通分量】。一旦删除了桥,这两个【边双连通分量】必然断开,图G就不连通了。可是假设在两个【边双连通分量】之间再加入一条边。桥就不再是桥了。这两个【边双连通分量】之间也就是双连通了。



那么假设图G有多个【边双连通分量】呢?至少应该加入多少条边,才干使得随意两个【边双连通分量】之间都是双连通(也就是图G是双连通的)

1、 首先要找出图G的全部【边双连通分量】。

2、 把每个【边双连通分量】都看做一个点(即【缩点】)

3、 问题再次被转化为“至少在缩点树上添加多少条树边。使得这棵树变为一个双连通图”。

首先知道一条等式:

若要使得随意一棵树。在添加若干条边后。变成一个双连通图,那么

至少添加的边数 =( 这棵树总度数为1的结点数 + 1 )/ 2。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <stack>
#define maxn 5010
#define maxm 20010
using namespace std; int n, m;
struct node {
int u, v, next;
};
node edge[maxm];
//缩点后形成树,每一个点的度数
int du[maxn];
int head[maxn], cnt;
int low[maxn], dfn[maxn];
//Belong数组的值是 1 ~ ebc_block
int Stack[maxn], Belong[maxn];
int ebc_block;//边双连通块数
int dfs_clock;
int top;//模拟栈的指针
bool Instack[maxn]; void init(){
cnt = 0;
memset(head, -1, sizeof(head));
} void addedge(int u, int v){
edge[cnt] = {u, v, head[u]};
head[u] = cnt++;
} void getmap(){
while(m--){
int a, b;
scanf("%d%d", &a, &b);
addedge(a, b);
addedge(b, a);
}
} void tarjan(int u, int pre){
int v;
low[u] = dfn[u] = ++dfs_clock;
Stack[top++] = u;
Instack[u] = true;
int have = 1;
for(int i = head[u]; i != -1; i = edge[i].next){
v = edge[i].v;
if(have && v == pre){//去重边
have = 0;
continue;
}
if(!dfn[v]){
tarjan(v, u);
low[u] = min(low[u], low[v]);
}
else if(Instack[v])
low[u] = min(low[u], dfn[v]);
}
if(low[u] == dfn[u]){
ebc_block++;
do{
v = Stack[--top];
Instack[v] = false;
Belong[v] = ebc_block;
}
while(v != u);
}
} void suodian(){
memset(du, 0, sizeof(du));
for(int i = 0; i < cnt; i += 2 ){
int u = Belong[edge[i].u];
int v = Belong[edge[i].v];
if(u != v)
du[u]++, du[v]++;
}
} void find(){
memset(dfn, 0, sizeof(dfn));
memset(low, 0, sizeof(low));
memset(Instack, false, sizeof(Instack));
memset(Belong, 0, sizeof(Belong));
dfs_clock = 0;
ebc_block = 0;
top = 0;
tarjan(1, -1);//连通图
} void solve(){
int ans = 0;
if(ebc_block == 1){
printf("0\n");
return ;
}
for(int i = 1; i <= ebc_block; ++i)
if(du[i] == 1) ans++;
printf("%d\n", (ans + 1) / 2);
} int main (){
while(scanf("%d%d", &n, &m) != EOF){
init();
getmap();
find();
suodian();
solve();
}
return 0;
}

POJ 3177--Redundant Paths【无向图添加最少的边成为边双连通图 &amp;&amp; tarjan求ebc &amp;&amp; 缩点构造缩点树】的更多相关文章

  1. POJ 3177 Redundant Paths 无向图边双联通基础题

    题意: 给一个无向图,保证任意两个点之间有两条完全不相同的路径 求至少加多少边才能实现 题解: 得先学会一波tarjan无向图 桥的定义是:删除这条边之后该图不联通 一条无向边(u,v)是桥,当且仅当 ...

  2. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  3. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  4. poj 3177 Redundant Paths【求最少添加多少条边可以使图变成双连通图】【缩点后求入度为1的点个数】

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11047   Accepted: 4725 ...

  5. POJ 3177 Redundant Paths(边双连通的构造)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13717   Accepted: 5824 ...

  6. POJ 3177——Redundant Paths——————【加边形成边双连通图】

    Redundant Paths Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Sub ...

  7. POJ 3177 Redundant Paths (tarjan边双连通分量)

    题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条pat ...

  8. POJ 3177 Redundant Paths POJ 3352 Road Construction

    这两题是一样的,代码完全一样. 就是给了一个连通图,问加多少条边可以变成边双连通. 去掉桥,其余的连通分支就是边双连通分支了.一个有桥的连通图要变成边双连通图的话,把双连通子图收缩为一个点,形成一颗树 ...

  9. POJ 3177 Redundant Paths(强连通分量)

    题目链接:http://poj.org/problem?id=3177 题目大意是一个无向图给你n个点m条边,让你求出最少加多少条边 可以让任意两个点相通两条及以上的路线(每条路线点可以重复,但是每条 ...

随机推荐

  1. ssh无法连接到远端Ubuntu的解决方法

    近日,饱受无法远程登录到新安装在VMWare上的Ubuntu虚拟机,现在发现问题所在.故记录此问题的解决方式,以备后用. 一.远程登录虚拟机的准备: Ubuntu虚拟机的联网方式应该选择Bridged ...

  2. suse linux通过iso文件安装gcc

    mount -t iso9660 -o loop SLES-11-SP4-DVD-x86_64-GM-DVD1.iso /media/#仅仅上述iso1即可 不需要mount iso2 mount - ...

  3. B1970 [Ahoi2005]Code 矿藏编码 暴力模拟

    小詹从哪整出来这么多水题?%%%这个题用栈模拟一下,然后直接暴力就行了...一开始还没想到,用的dfs,我太菜了... 题干: Description 依次对每份进行编码,得S1,S2,S3,S4.该 ...

  4. php和nodejs

    整个故事正如好莱坞大片的经典剧情走向:两位昔日好友如今分道扬镳,甚至被迫陷入了你死我活的斗争当中.刚开始的分歧并不严重,无非是一位老友对于另一位伙伴长久以来占据.但又绝口不提的业务领域产生了点兴趣.而 ...

  5. computed与methods的异同

    在vue.js中,有methods和computed两种方式来动态当作方法来用的 如下: 两种方式在这种情况下的结果是一样的 写法上的区别是computed计算属性的方式在用属性时不用加(),而met ...

  6. ORACLE 11g 生产中高水位线(HWM)处理

    数据库中表不断的insert,delete,update,导致表和索引出现碎片.这会导致HWM之前有很多的空闲空间,而oracle在做全表扫描的时候会读取HWM一下的所有块,这样会产生更多的IO,影响 ...

  7. 【读书笔记】UEFI原理与编程(1)概述及开发环境的搭建

    一.概述: 0.为什么会有这篇文章 说实在的,在2016初的时候,我就萌生了写一个操作系统的念头,但是这对于我一个菜鸟来说,犹如登天. 既然想了就去写,即使最后做不完,也不后悔. 抱着这样的念头,我开 ...

  8. Hadoop MapReduce编程 API入门系列之网页流量版本1(二十一)

    不多说,直接上代码. 对流量原始日志进行流量统计,将不同省份的用户统计结果输出到不同文件. 代码 package zhouls.bigdata.myMapReduce.areapartition; i ...

  9. ACM-ICPC北京赛区[2017-11-19]

    Domains K-Dimensional Foil Graph Chinese Checkers Cats and Fish #include<stdio.h> #include< ...

  10. Block Functionality

    Block Functionality A block is an anonymous inline collection of code that: Has a typed argument lis ...