Spark MLlib聚类KMeans
算法说明
聚类(Cluster analysis)有时也被翻译为簇类,其核心任务是:将一组目标object划分为若干个簇,每个簇之间的object尽可能相似,簇与簇之间的object尽可能相异。聚类算法是机器学习(或者说是数据挖掘更合适)中重要的一部分,除了最为简单的K-Means聚类算法外,比较常见的还有层次法(CURE、CHAMELEON等)、网格算法(STING、WaveCluster等),等等。
较权威的聚类问题定义:所谓聚类问题,就是给定一个元素集合D,其中每个元素具有n个可观察属性,使用某种算法将D划分成k个子集,要求每个子集内部的元素之间相异度尽可能低,而不同子集的元素相异度尽可能高。其中每个子集叫做一个簇。
K-means聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。
与分类不同,分类是示例式学习,要求分类前明确各个类别,并断言每个元素映射到一个类别。而聚类是观察式学习,在聚类前可以不知道类别甚至不给定类别数量,是无监督学习的一种。目前聚类广泛应用于统计学、生物学、数据库技术和市场营销等领域,相应的算法也非常多。
实例介绍
在该实例中将介绍K-Means算法,K-Means属于基于平方误差的迭代重分配聚类算法,其核心思想十分简单:
- 随机选择K个中心点;
- 计算所有点到这K个中心点的距离,选择距离最近的中心点为其所在的簇;
- 简单地采用算术平均数(mean)来重新计算K个簇的中心;
- 重复步骤2和3,直至簇类不再发生变化或者达到最大迭代值;
- 输出结果。
K-Means算法的结果好坏依赖于对初始聚类中心的选择,容易陷入局部最优解,对K值的选择没有准则可依循,对异常数据较为敏感,只能处理数值属性的数据,聚类结构可能不平衡。
本实例中进行如下步骤:
1.装载数据,数据以文本文件方式进行存放;
2.将数据集聚类,设置2个类和20次迭代,进行模型训练形成数据模型;
3.打印数据模型的中心点;
4.使用误差平方之和来评估数据模型;
5.使用模型测试单点数据;
6.交叉评估1,返回结果;交叉评估2,返回数据集和结果。
测试数据说明
该实例使用的数据为kmeans_data.txt,可以在本系列附带资源/data/class8/目录中找到。在该文件中提供了6个点的空间位置坐标,使用K-means聚类对这些点进行分类。
使用的kmeans_data.txt的数据如下所示:
0.0 0.0 0.0
0.1 0.1 0.1
0.2 0.2 0.2
9.0 9.0 9.0
9.1 9.1 9.1
9.2 9.2 9.2
程序代码
import org.apache.log4j.{Level, Logger}
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
object Kmeans {
def main(args: Array[String]) {
// 屏蔽不必要的日志显示在终端上
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
Logger.getLogger("org.eclipse.jetty.server").setLevel(Level.OFF)
// 设置运行环境
val conf = new SparkConf().setAppName("Kmeans").setMaster("local[4]")
val sc = new SparkContext(conf)
// 装载数据集
val data = sc.textFile("/home/hadoop/upload/class8/kmeans_data.txt", )
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble)))
// 将数据集聚类,2个类,20次迭代,进行模型训练形成数据模型
val numClusters =
val numIterations =
val model = KMeans.train(parsedData, numClusters, numIterations)
// 打印数据模型的中心点
println("Cluster centers:")
for (c <- model.clusterCenters) {
println(" " + c.toString)
}
// 使用误差平方之和来评估数据模型
val cost = model.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + cost)
// 使用模型测试单点数据
println("Vectors 0.2 0.2 0.2 is belongs to clusters:" + model.predict(Vectors.dense("0.2 0.2 0.2".split(' ').map(_.toDouble))))
println("Vectors 0.25 0.25 0.25 is belongs to clusters:" + model.predict(Vectors.dense("0.25 0.25 0.25".split(' ').map(_.toDouble))))
println("Vectors 8 8 8 is belongs to clusters:" + model.predict(Vectors.dense("8 8 8".split(' ').map(_.toDouble))))
// 交叉评估1,只返回结果
val testdata = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble)))
val result1 = model.predict(testdata)
result1.saveAsTextFile("/home/hadoop/upload/class8/result_kmeans1")
// 交叉评估2,返回数据集和结果
val result2 = data.map {
line =>
val linevectore = Vectors.dense(line.split(' ').map(_.toDouble))
val prediction = model.predict(linevectore)
line + " " + prediction
}.saveAsTextFile("/home/hadoop/upload/class8/result_kmeans2")
sc.stop()
}
}

IDEA执行情况
第一步 使用如下命令启动Spark集群
$cd /app/hadoop/spark-1.1.
$sbin/start-all.sh
第二步 在IDEA中设置运行环境
在IDEA运行配置中设置Kmeans运行配置,由于读入的数据已经在程序中指定,故在该设置界面中不需要设置输入参数

第三步 执行并观察输出
在运行日志窗口中可以看到,通过计算计算出模型并找出两个簇中心点:(9.1,9.1,9.1)和(0.1,0.1,0.1),使用模型对测试点进行分类求出分属于族簇。

第四步 查看输出结果文件
在/home/hadoop/upload/class8目录中有两个输出目录:

查看结果1,在该目录中只输出了结果,分别列出了6个点所属不同的族簇

查看结果2,在该目录中输出了数据集和结果

Spark MLlib聚类KMeans的更多相关文章
- Spark MLlib中KMeans聚类算法的解析和应用
聚类算法是机器学习中的一种无监督学习算法,它在数据科学领域应用场景很广泛,比如基于用户购买行为.兴趣等来构建推荐系统. 核心思想可以理解为,在给定的数据集中(数据集中的每个元素有可被观察的n个属性), ...
- 使用 Spark MLlib 做 K-means 聚类分析[转]
原文地址:https://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice4/ 引言 提起机器学习 (Machine Lear ...
- Spark MLBase分布式机器学习系统入门:以MLlib实现Kmeans聚类算法
1.什么是MLBaseMLBase是Spark生态圈的一部分,专注于机器学习,包含三个组件:MLlib.MLI.ML Optimizer. ML Optimizer: This layer aims ...
- Spark MLlib KMeans 聚类算法
一.简介 KMeans 算法的基本思想是初始随机给定K个簇中心,按照最邻近原则把分类样本点分到各个簇.然后按平均法重新计算各个簇的质心,从而确定新的簇心.一直迭代,直到簇心的移动距离小于某个给定的值. ...
- spark mllib k-means算法实现
package iie.udps.example.spark.mllib; import java.util.regex.Pattern; import org.apache.spark.SparkC ...
- Spark MLlib架构解析(含分类算法、回归算法、聚类算法和协同过滤)
Spark MLlib架构解析 MLlib的底层基础解析 MLlib的算法库分析 分类算法 回归算法 聚类算法 协同过滤 MLlib的实用程序分析 从架构图可以看出MLlib主要包含三个部分: 底层基 ...
- KMeans|| in Spark MLLib
算法跟传统的kmeans的区别主要在于:kmeans||的k个中心的不是随机初始化的.而是选择了k个彼此"足够"分离的中心. org.apache.spark.mllib.clus ...
- Spark入门实战系列--8.Spark MLlib(上)--机器学习及SparkMLlib简介
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .机器学习概念 1.1 机器学习的定义 在维基百科上对机器学习提出以下几种定义: l“机器学 ...
- Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analys ...
随机推荐
- python 3.x 写 shell sed 替换功能
shell sed 替换功能 f1 = open('yesterday','r',encoding='utf-8') f2 = open('yesterday2','w',encoding='utf- ...
- 基于JS的身份证验证(完整版)
var Wi = [ 7, 9, 10, 5, 8, 4, 2, 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1 ]; // 加权因子 var ValideCode = [ 1, 0 ...
- SSH概述与配置文件说明
一.什么是SSH? 简单说,SSH是一种网络协议,用于计算机之间的加密登录.在出现SSH之前,系统管理员需要登入远程服务器执行系统管理任务时,都是用telnet来实现的,telnet协议采用明文密码传 ...
- zabbix2.4.5安装zatree插件
一.关于zatree zatree 是来自国内58公司开发的监控软件zabbix的一个插件,主要功能是提供host group的树形展示和在item里指定关键字查询及数据排序. 项目地址:https: ...
- Unity 获得视频的某一帧,生成缩略图
Unity 并无直接获取视频某一帧图像的API,所以想要生成缩略图就要自己写方法了, 图片和视频都可以用这种方式生成缩略图,另,转载请标明出处,谢谢. using System.Collections ...
- 金融项目java开发_BigDecimal(解决计算精度问题)
当使用double进行商业运算时,double计算会丢失精度.可以使用BigDecimal进行计算. import java.math.BigDecimal; import org.junit.Tes ...
- LeetCode_Construct Binary Tree from Inorder and Postorder Traversal
一.题目 Construct Binary Tree from Inorder and Postorder Traversal My Submissions Given inorder and pos ...
- PPAPI中使用Chromium的3D图形接口
使用PPAPI的Graphics 3D接口做了一个小演示样例,鼠标点击插件区域.绘制颜色,效果与ppapi_simple相似. foruok原创,如需转载请关注foruok的微信订阅号"程序 ...
- 在eclipse中公布maven的多模块web项目到tomcat上及单步debug模块jar
1.在eclipse中公布maven的多模块web项目到tomcat eclipse和maven及tomcat的部署略去,还有maven的基础知识和使用在此处略去. 依照例如以下的步骤操作: 将lib ...
- 开启Windows 7远程桌面功能的做法
作者:朱金灿 来源:http://blog.csdn.net/clever101 本设置方法同样适用用Vista和Windows Server 2008. 1.依次点击"开始"菜单 ...