题目大意: 有一个天平,天平左右两边各有若干个钩子,总共有C个钩子(每个钩子有相对于中心的距离,左负右正),有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数。

将每个砝码看作一组,组内各个物品的体积为每个挂钩与该砝码形成的力矩,背包总体积严格为0,这便是分组背包计数问题(特殊点:每一组必须出一个物品,而不是至多出一个物品)。由于c++不允许负的数组下标,所以每次更新时,j要加上offsetJ。

实现分组背包计数问题时,可以用填表法(找以前节点求自己值)(DP1)或刷表法(找以后节点更新以后值)(DP2)。由于刷表法时,如果DP[i][j]==0,可以跳过,所以节省时间。

注意:

  • 不可以用一维数组倒序循环来表示DP数组,因为j-objV可能比j还大
  • 同理,每次判断时,不是j-objV>=0,0代表天平的支点而不是左端点。所以应当为j-objV>=minJ。
#include <cstdio>
#include <cstring>
#include <cstdarg>
using namespace std; const int MAX_V = , MAX_OBJ = , MAX_HOOP = ;
const int Plus = ;
#define Sub(x) x+offsetJ
int TotHoop;
int Len[MAX_HOOP], W[MAX_OBJ]; void _printf(char *format, ...)
{
#ifdef _DEBUG
va_list(args);
va_start(args, format);
vprintf(format, args);
va_end(args);
#endif
} int DP1(int totHoop, int totDev, int *_w, int *_len)
{
int minJ = , maxJ = , wSum = , offsetJ, objV = ;
static int DP[MAX_OBJ][MAX_V];
for (int dev = ; dev <= totDev; dev++)
wSum += _w[dev];
for (int hoop = ; hoop <= totHoop; hoop++)
_len[hoop] > ? maxJ += _len[hoop] * wSum : minJ += _len[hoop] * wSum;
offsetJ = -minJ;
DP[][offsetJ] = ;
_printf("+ offsetJ %d maxJ %d\n", +offsetJ, maxJ);
for (int i = ; i <= totDev; i++)
for (int j = minJ; j <= maxJ; j++)
for (int hoop = ; hoop <= totHoop; hoop++)
{
objV = _w[i] * _len[hoop];
if (j - objV >= minJ && j - objV <= maxJ)
{
DP[i][j + offsetJ] += DP[(i - )][j + offsetJ - objV];
_printf("%d=DP[%d][%d] += DP[%d][%d]=%d\n", DP[i][j + offsetJ], i, j, i - , j - _w[i] * _len[hoop], DP[i - ][j - _w[i] * _len[hoop] + offsetJ]);
}
}
return DP[totDev][offsetJ];
} int DP2(int totHoop, int totDev, int *_w, int *_len)
{
int minJ = , maxJ = , wSum = , offsetJ, objV = ;
static int DP[MAX_OBJ][MAX_V];
for (int dev = ; dev <= totDev; dev++)
wSum += _w[dev];
for (int hoop = ; hoop <= totHoop; hoop++)
_len[hoop] > ? maxJ += _len[hoop] * wSum : minJ += _len[hoop] * wSum;
offsetJ = -minJ;
DP[][offsetJ] = ;
_printf("+ offsetJ %d maxJ %d\n", + offsetJ, maxJ);
for (int i = ; i < totDev; i++)
for (int j = minJ; j <= maxJ; j++)
if (DP[i][j+ offsetJ])
for (int hoop = ; hoop <= totHoop; hoop++)
{
objV = _w[i+] * _len[hoop];
DP[i + ][j + objV + offsetJ] += DP[i][j + offsetJ];
_printf("%d=DP[%d][%d] += DP[%d][%d]=%d\n", DP[i+][j+objV+ offsetJ], i+, j+objV+ offsetJ, i, j+ offsetJ , DP[i][j + offsetJ]);
}
return DP[totDev][offsetJ];
} int main()
{
#ifdef _DEBUG
freopen("c:\\noi\\source\\input.txt", "r", stdin);
#endif
int totDevice, vCnt = , totV = , maxV = , minV = ;
scanf("%d%d", &TotHoop, &totDevice);
for (int i = ; i <= TotHoop; i++)
scanf("%d", i + Len);
for (int i = ; i <= totDevice; i++)
scanf("%d", i + W);
printf("%d\n", DP2(TotHoop, totDevice, W, Len));
return ;
}

POJ1837 Balance 背包的更多相关文章

  1. POJ1837 Balance[分组背包]

    Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 13717   Accepted: 8616 Descript ...

  2. HDU 5616 Jam's balance 背包DP

    Jam's balance Problem Description Jim has a balance and N weights. (1≤N≤20)The balance can only tell ...

  3. poj 1837 Balance(背包)

    题目链接:http://poj.org/problem?id=1837 Balance Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. poj1837 Balance

    Balance  POJ - 1837 题目大意: 有一个天平,天平左右两边各有若干个钩子,总共有C个钩子,有G个钩码,求将钩码全部挂到钩子上使天平平衡的方法的总数. 其中可以把天枰看做一个以x轴0点 ...

  5. poj1837【背包】

    题意: 有一根杆子,给出一些杆子上的位置,位置上能放重物,再给出一些重物的重量. 重物都需要被使用,但是位置不一定都要用到. 问你能有多少种方法让这个杆子平衡. 思路: 在位置上是0/1背包思想,取或 ...

  6. poj1837 01背包(雾

    Description A train has a locomotive that pulls the train with its many passenger coaches. If the lo ...

  7. POJ1837 Balance(DP)

    POJ1837http://poj.org/problem?id=1837 题目大意就是说有一个称上有C个挂钩,告诉你每个挂钩的位置,现在有G个重物,求是之平衡的方法数. 转化一下:DP[i][j]表 ...

  8. poj 01背包

    首先我是按这篇文章来确定题目的. poj3624 Charm Bracelet 模板题 没有要求填满,所以初始化为0就行 #include<cstdio> #include<algo ...

  9. POJ之01背包系列

    poj3624 Charm Bracelet 模板题 没有要求填满,所以初始化为0就行 #include<cstdio> #include<iostream> using na ...

随机推荐

  1. Safe Area Layout Guide before iOS 9.0

    今天使用Xcode9.1重建项目,什么都没写运行报错:Safe Area Layout Guide before iOS 9.0!目前为止,不晓得原因,现记录解决方法:

  2. 苹果双系统win8.1遇到的一些问题

    MacBook air是一款不错的电脑,详细没研究就不叙述好与坏了.只此记录自己使用这款笔记本遇到的问题. 一.安装双系统win8.1 1.下载镜像文件—>拷贝到ios内存中,一个8GU盘.ht ...

  3. WPF度量系統

    和Winform不同,WPF的度量單位不是像素,而是設備無關單位DIU,其大小總是1/96吋 那麽,WPF中一個寬度爲96的按鈕,到底是多少個像素呢? 答:取決於系統DPI. 計算公式爲:實際像素 = ...

  4. String类面试坑题

    1.面试坑题F:\SHJT\JavaWorkspace\JavaSE\workspace\day13ezra\src\cn\itcast\sh\classcode\BTStringLastIndexO ...

  5. 【sqli-labs】 less26 GET- Error based -All you SPACES and COMMENTS belong to us(GET型基于错误的去除了空格和注释的注入)

    看了下源码 所有的注释形式和反斜线,and,or都被了过滤掉了 单引号没有过滤 空格也被过滤了 http://localhost/sqli-labs-master/Less-26/?id=1' htt ...

  6. (转)基于Metronic的Bootstrap开发框架经验总结(2)--列表分页处理和插件JSTree的使用

    http://www.cnblogs.com/wuhuacong/p/4759564.html 在上篇<基于Metronic的Bootstrap开发框架经验总结(1)-框架总览及菜单模块的处理& ...

  7. Data mapping-数据映射

    数据映射:根据数据的结构信息建立数据间的映射操作机制. 数据映射的要素: 一.数据 1.源数据: 2.目标数据: 3.数据间关系: 4.数据的元数据(结构信息). 5.元素类型的对应关系. 二.元数据 ...

  8. Python标准模块--logging(转载)

    转载地址:http://www.cnblogs.com/zhbzz2007/p/5943685.html#undefined Python标准模块--logging 1 logging模块简介 log ...

  9. 【转载】java文件路径问题及getResource和getClassLoader().getResource的区别

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u012572955/article/details/52880520我们经常在java的io操作中读 ...

  10. [系统资源攻略]memory

    内存 这里的讲到的 "内存" 包括物理内存和虚拟内存,虚拟内存(Virtual Memory)把计算机的内存空间扩展到硬盘,物理内存(RAM)和硬盘的一部分空间(SWAP)组合在一 ...