What is your first plan of action when working on a new competition?

理解竞赛,数据,评价标准。

建立交叉验证集。

制定、更新计划。

检索类似竞赛和相关论文。

What does your iteration cycle look like?

Sacrifice a couple of submissions in the beginning of the contest to understand the importance of the different algorithms -- save energy for last 100 meters.

Do the following process for multiple models

  • Select a model and do a recursive loop with the following steps:

    • Transform data (scaling, log(x+1) values, treat missing values, PCA or none)
    • Optimize hyper parameters of the model
    • Do feature engineering for that model (as in generate new features)
    • Do features' selection for that model (as in reducing them)
    • Redo previous steps as optimum parameters are likely to have changed slightly
  • Save hold-out predictions to be used later (meta-modelling)
  • Check consistency of CV scores with leaderboard. If problematic, re-assess cross-validation process and re-do steps

Create partnerships. Ideally you look for people that are likely to have taken different approaches than you have. Historically (in contrast) I was looking for friends; people I can learn from and people I can have fun with - not so much winning.

Find a good way to ensemble

What does your iteration cycle look like?

It depends on the competition and I usually go through a few stages.

At the beginning I focus on data exploration and try some basic approaches so I iterate pretty quickly.

Once the obvious ideas are exhausted I usually slow down and do some research into the domain -- reading papers, forum post, etc. If I get an idea I would then implement it and submit it to the public LB.

My iteration cycle usually is short -- I rarely work on feature engineering that requires more than a few hours of coding for a particular feature.

My personal experience is that very complicated features usually do not work well -- possibly because of my buggy code.

What does your iteration cycle look like?

Read the overview and data description of the competition carefully

Find similar Kaggle competitions. As a relatively new comer, I have collected and done a basic analysis of all Kaggle competitions.

Read solutions of similar competitions.

Read papers to make sure I don’t miss any progress in the field.

Analyze the data and build a stable CV.

Data pre-processing, feature engineering, model training.

Result analysis such as prediction distribution, error analysis, hard examples.

Elaborate models or design a new model based on the analysis.

Based on data analysis and result analysis, design models to add diversities or solve hard samples.

Ensemble.

Return to a former step if necessary.

What does your iteration cycle look like?

I always prepare the dataset and apply feature engineering as much as I can, then I choose a training algorithm and optimize hyperparameters based on a cross validation score. If a model is good and stable I save the trainset and testset predictions. Then I start all over again using another training algorithm or model. When I have a handful of good model predictions, I start ensembling at the second level of training.

What does your iteration cycle look like?

Understand the dataset. At least enough to build a consistent validation set.

Build a consistent validation set and test its relationship with the leaderboard score.

Build a very simple model.

Look for approaches used in similar competitions in the past.

Start feature engineering, step by step to create a strong model.

Think about ensembling, be it by creating alternate versions of the feature set or using different modeling techniques (xgb, rf, linear regression, neural nets, factorization machines, etc).

What are your favorite machine learning algorithms?

ridge regression, resnet-50, GBT, XGB

What is your approach to hyper-tuning parameters?

用网格搜索。

基于交叉验证集。

查看类似竞赛,相关论文中类似问题下的设置。

对数据和算法的理解和经验。

观察调参前后的输出分布,受影响样本等。

In a few words, what wins competitions?

好的验证集,好的模型和特征,模型融合,从别的竞赛和论文中学习,遵守计划。

Kaggle竞赛顶尖选手经验汇总的更多相关文章

  1. 《Python机器学习及实践:从零开始通往Kaggle竞赛之路》

    <Python 机器学习及实践–从零开始通往kaggle竞赛之路>很基础 主要介绍了Scikit-learn,顺带介绍了pandas.numpy.matplotlib.scipy. 本书代 ...

  2. 如何使用Python在Kaggle竞赛中成为Top15

    如何使用Python在Kaggle竞赛中成为Top15 Kaggle比赛是一个学习数据科学和投资时间的非常的方式,我自己通过Kaggle学习到了很多数据科学的概念和思想,在我学习编程之后的几个月就开始 ...

  3. 初窥Kaggle竞赛

    初窥Kaggle竞赛 原文地址: https://www.dataquest.io/mission/74/getting-started-with-kaggle 1: Kaggle竞赛 我们接下来将要 ...

  4. 用python参加Kaggle的些许经验总结(收藏)

    Step1: Exploratory Data Analysis EDA,也就是对数据进行探索性的分析,一般就用到pandas和matplotlib就够了.EDA一般包括: 每个feature的意义, ...

  5. 《机器学习及实践--从零开始通往Kaggle竞赛之路》

    <机器学习及实践--从零开始通往Kaggle竞赛之路> 在开始说之前一个很重要的Tip:电脑至少要求是64位的,这是我的痛. 断断续续花了个把月的时间把这本书过了一遍.这是一本非常适合基于 ...

  6. 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享

    pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...

  7. kaggle竞赛分享:NFL大数据碗(上篇)

    kaggle竞赛分享:NFL大数据碗 - 上 竞赛简介 一年一度的NFL大数据碗,今年的预测目标是通过两队球员的静态数据,预测该次进攻推进的码数,并转换为该概率分布: 竞赛链接 https://www ...

  8. Kaggle竞赛入门:决策树算法的Python实现

    本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...

  9. Kaggle竞赛入门(二):如何验证机器学习模型

    本文翻译自kaggle learn,也就是kaggle官方最快入门kaggle竞赛的教程,强调python编程实践和数学思想(而没有涉及数学细节),笔者在不影响算法和程序理解的基础上删除了一些不必要的 ...

随机推荐

  1. Automatic Tuning of Memory Management

    4.2.2 Automatic Tuning of Memory Management Two memory management initialization parameters, MEMORY_ ...

  2. 纪录:Solr6.4.2+Flume1.7.0 +morphline+kafka集成

    当前大多数企业版hadoop的solr版本都还停留在solr4.x,由于这个版本的solr本身的bug较多,使用起来会出很多奇怪的问题.如部分更新日期字段失败的问题. 最新的solr版本不仅修复了以前 ...

  3. magento 的一些关于addFieldToFilter的查询

    1,匹配country_id的首字母,查询国家,返回数组 //查询国家数据集 $countryCollection=Mage::getResourceModel('directory/country_ ...

  4. i386和x86-64区别通俗易懂版本(转)

    x86架构首度出现在1978年推出的Intel 8086中央处理器,它是从Intel 8008处理器中发展而来的,而8008则是发展自Intel 4004的.Intel之后又推出了包括80186.80 ...

  5. mybatis mapper xml文件配置resultmap时,id行和result行有什么区别?

    mybatis mapper xml文件配置resultmap时,id行和result行有什么区别? <resultMap id = "CashInvoiceMap" typ ...

  6. Java内联函数

    1.内联函数就是指函数在被调用的地方直接展开,编译器在调用时不用像一般函数那样,參数压栈,返回时參数出栈以及资源释放等,这样提高了程序运行速度. 2.Java语言中有一个keywordfinal来指明 ...

  7. iOS开发——定制圆形头像与照相机图库的使用

    如今的App都很流行圆形的头像,比方QQ右上角的头像,今日头条的头像等等.这已经成为App设计的趋势了.今天我们就来简单实现一下这个功能,我还会把从手机拍照中或者图库中取出作为头像的照片存储到应用程序 ...

  8. Android——推断Service是否已经启动

    延续百度地图定位的Demo.採用Service来进行百度定位,并且将数据上传到server上遇到了一个问题:在真机中使用清理内存来关闭程序的之后,Service会被关闭,可是过几秒中,它又会自己主动重 ...

  9. iOS 8 中 UIAlertView 和 UIActionSheet 河里去了?

    iOS 8 中 UIAlertView 和 UIActionSheet 河里去了? 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商 ...

  10. Google面试题-高楼扔鸡蛋问题

    本文由 @lonelyrains 出品.转载请注明出处.  文章链接: http://blog.csdn.net/lonelyrains/article/details/46428569 高楼扔鸡蛋问 ...