我们可以发现最多只会进行5次操作。

由此我们从双向跑dfs,用一个unordered_map来保存状态,枚举一下两边的深度即可。

如果4次仍然不可行,则只有可能是5次。所以正反最多只需要搜2层

code:

#include<cstdio>
#include<tr1/unordered_map>
#include<algorithm>
#include<queue>
using namespace std;
using namespace std :: tr1;
unordered_map<long long ,int>F[3];
queue<long long>Q;
int n, A[20], w[20];
int getnext(int arr[],int cur)
{
while(cur < n && arr[cur+1] == arr[cur] + 1)++cur;
return cur;
}
long long get(int arr[])
{
long long tmp = 0;
for(int i = 1;i <= n; ++i)
{
tmp = tmp * 10 + arr[i];
}
return tmp;
}
int dfs(int cur,int target,int arr[],int ty)
{
if(cur == target)
{
long long fin = get(arr);
F[ty][fin] = -1;
Q.push(fin);
if(F[ty^1][fin] == -1) return 1;
return 0;
}
int h[12];
for(int lefts = 1;lefts <= n; ++lefts)
{
for(int rights = lefts; rights <= n; ++rights)
{
int pos = 0;
for(int fronts = 1; fronts < lefts; ++fronts)
{
pos = 0;
for(int i = 1; i < fronts; ++i) h[++pos] = arr[i];
for(int i = lefts; i <= rights ;++i) h[++pos] = arr[i];
for(int i = fronts;i < lefts; ++i) h[++pos] = arr[i];
for(int i = rights + 1; i <= n; ++i)h[++pos] = arr[i];
if(dfs(cur + 1,target,h,ty)) return 1;
}
for(int backs = rights + 1; backs <= n; ++backs)
{
pos = 0;
for(int i = 1;i < lefts; ++i) h[++pos] = arr[i];
for(int i = rights + 1;i <= backs; ++i)h[++pos] = arr[i];
for(int i = lefts; i <= rights ;++i)h[++pos] = arr[i];
for(int i = backs + 1;i <= n; ++i)h[++pos] = arr[i];
if(dfs(cur + 1, target,h,ty))return 1;
}
}
}
return 0;
}
int main()
{
int cas = 0;
while(1)
{
scanf("%d",&n);
if(!n)break;
for(int i = 1;i <= n;++i)
{
scanf("%d",&A[i]);
w[i] = A[i];
}
sort(w + 1, w + 1 + n);
if(getnext(A,1) == n)
{
printf("0\n");
continue;
}
while(!Q.empty())
{
F[0][Q.front()] = 0, F[1][Q.front()] = 0;
Q.pop();
}
F[1][get(w)] = -1;
if(dfs(0,1,A,0))printf("1\n");
else if(dfs(0,1,A,0) || dfs(0,1,w,1))printf("2\n");
else if(dfs(0,2,A,0) || dfs(0,1,w,1))printf("3\n");
else if(dfs(0,2,A,0) || dfs(0,2,w,1))printf("4\n");
else printf("5\n");
}
return 0;
}

Editing a Book 搜索 + meet in the middle的更多相关文章

  1. 折半搜索(meet in the middle)

    折半搜索(meet in the middle) ​ 我们经常会遇见一些暴力枚举的题目,但是由于时间复杂度太过庞大不得不放弃. ​ 由于子树分支是指数性增长,所以我们考虑将其折半优化; 前言 ​ 这个 ...

  2. Meet in the middle

    搜索是\(OI\)中一个十分基础也十分重要的部分,近年来搜索题目越来越少,逐渐淡出人们的视野.但一些对搜索的优化,例如\(A\)*,迭代加深依旧会不时出现.本文讨论另一种搜索--折半搜索\((meet ...

  3. Meet in the middle学习笔记

    Meet in the middle(MITM) Tags:搜索 作业部落 评论地址 PPT中会讲的很详细 当搜索的各项互不影响(如共\(n\)个物品前\(n/2\)个物品选不选和后\(n/2\)个物 ...

  4. 【BZOJ4800】[Ceoi2015]Ice Hockey World Championship Meet in the Middle

    [BZOJ4800][Ceoi2015]Ice Hockey World Championship Description 有n个物品,m块钱,给定每个物品的价格,求买物品的方案数. Input 第一 ...

  5. Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)

    目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...

  6. 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)

    A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...

  7. meet in the middle 复习笔记

    前言 若干年前看过现在又忘了.这么简单都忘 所以今天来重新复习一下. 正题 考虑这样的问题: 给定 \(n\) 个物品的价格,你有 \(m\) 块钱,每件物品限买一次,求买东西的方案数. \(n\le ...

  8. 浅谈Meet in the middle——MITM

    目测观看人数 \(0+0+0=0\) \(\mathrm{Meet\;in\;the\;middle}\)(简称 \(\rm MITM\)),顾名思义就是在中间相遇. 可以理解为就是起点跑搜索树基本一 ...

  9. SPOJ4580 ABCDEF(meet in the middle)

    题意 题目链接 Sol 发现abcdef是互不相关的 那么meet in the middle一下.先算出abc的,再算def的 注意d = 0的时候不合法(害我wa了两发..) #include&l ...

随机推荐

  1. Linux拖拽上传文件 lrzsz

    首先安装lrzsz 命令为:yum install lrzsz 安装完毕后直接将.tar.gz格式的文件拖如xshell的窗口内就会自动上传.

  2. cxdbtreelist的处理点滴

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAuAAAAE8CAIAAAAOqJOXAAAgAElEQVR4nOy9eXAcV37n+bwzf21sbO ...

  3. Tkinter之输入框操作

    昨天看好的,更新一下记录而已. #coding: utf8 from Tkinter import * def reg(): s1 = e1.get() s2 = e2.get() t1 = len( ...

  4. [bzoj1090][SCOI2003]字符串折叠_区间dp

    字符串折叠 bzoj-1090 SCOI-2003 题目大意:我说不明白...链接 注释:自己看 想法:动态规划 状态:dp[i][j]表示从第i个字符到第j个字符折叠后的最短长度. 转移:dp[l] ...

  5. redis安装配置-linux

    wget http://download.redis.io/releases/redis-3.2.9.tar.gz .tar.gz cd redis-/ make --启动 ./redis-serve ...

  6. maven 自动部署到tomcat

    使用maven的自动部署功能可以很方便的将maven工程自动部署到远程tomcat服务器,减少部署时间,方便快捷. 一.配置tomcat manager 1.编辑tomcat目录下,conf/tomc ...

  7. Android获取设备屏幕宽高像素值的两个方法

    private void get1() { Resources resources = this.getResources(); DisplayMetrics dm = resources.getDi ...

  8. Java使用JAVE获取MP4播放时长

  9. Github Pages 建立过程记录

    之前建立过一个測试页面. 如今在折腾CreateJS 试着把离线版的文档传到github pages上面. 第一步:创建Repository 第二步:本地初始化 主要命令:git init 第三步:复 ...

  10. 自己定义控件三部曲之动画篇(七)——ObjectAnimator基本使用

    前言: 假如生活欺骗了你, 不要悲伤,不要心急! 忧郁的日子里须要镇静: 相信吧,快乐的日子终将会来临! 心儿永远向往着未来: 如今却常是忧郁. 一切都是瞬息,一切都将会过去: 而那过去了的,就会成为 ...