我们可以发现最多只会进行5次操作。

由此我们从双向跑dfs,用一个unordered_map来保存状态,枚举一下两边的深度即可。

如果4次仍然不可行,则只有可能是5次。所以正反最多只需要搜2层

code:

#include<cstdio>
#include<tr1/unordered_map>
#include<algorithm>
#include<queue>
using namespace std;
using namespace std :: tr1;
unordered_map<long long ,int>F[3];
queue<long long>Q;
int n, A[20], w[20];
int getnext(int arr[],int cur)
{
while(cur < n && arr[cur+1] == arr[cur] + 1)++cur;
return cur;
}
long long get(int arr[])
{
long long tmp = 0;
for(int i = 1;i <= n; ++i)
{
tmp = tmp * 10 + arr[i];
}
return tmp;
}
int dfs(int cur,int target,int arr[],int ty)
{
if(cur == target)
{
long long fin = get(arr);
F[ty][fin] = -1;
Q.push(fin);
if(F[ty^1][fin] == -1) return 1;
return 0;
}
int h[12];
for(int lefts = 1;lefts <= n; ++lefts)
{
for(int rights = lefts; rights <= n; ++rights)
{
int pos = 0;
for(int fronts = 1; fronts < lefts; ++fronts)
{
pos = 0;
for(int i = 1; i < fronts; ++i) h[++pos] = arr[i];
for(int i = lefts; i <= rights ;++i) h[++pos] = arr[i];
for(int i = fronts;i < lefts; ++i) h[++pos] = arr[i];
for(int i = rights + 1; i <= n; ++i)h[++pos] = arr[i];
if(dfs(cur + 1,target,h,ty)) return 1;
}
for(int backs = rights + 1; backs <= n; ++backs)
{
pos = 0;
for(int i = 1;i < lefts; ++i) h[++pos] = arr[i];
for(int i = rights + 1;i <= backs; ++i)h[++pos] = arr[i];
for(int i = lefts; i <= rights ;++i)h[++pos] = arr[i];
for(int i = backs + 1;i <= n; ++i)h[++pos] = arr[i];
if(dfs(cur + 1, target,h,ty))return 1;
}
}
}
return 0;
}
int main()
{
int cas = 0;
while(1)
{
scanf("%d",&n);
if(!n)break;
for(int i = 1;i <= n;++i)
{
scanf("%d",&A[i]);
w[i] = A[i];
}
sort(w + 1, w + 1 + n);
if(getnext(A,1) == n)
{
printf("0\n");
continue;
}
while(!Q.empty())
{
F[0][Q.front()] = 0, F[1][Q.front()] = 0;
Q.pop();
}
F[1][get(w)] = -1;
if(dfs(0,1,A,0))printf("1\n");
else if(dfs(0,1,A,0) || dfs(0,1,w,1))printf("2\n");
else if(dfs(0,2,A,0) || dfs(0,1,w,1))printf("3\n");
else if(dfs(0,2,A,0) || dfs(0,2,w,1))printf("4\n");
else printf("5\n");
}
return 0;
}

Editing a Book 搜索 + meet in the middle的更多相关文章

  1. 折半搜索(meet in the middle)

    折半搜索(meet in the middle) ​ 我们经常会遇见一些暴力枚举的题目,但是由于时间复杂度太过庞大不得不放弃. ​ 由于子树分支是指数性增长,所以我们考虑将其折半优化; 前言 ​ 这个 ...

  2. Meet in the middle

    搜索是\(OI\)中一个十分基础也十分重要的部分,近年来搜索题目越来越少,逐渐淡出人们的视野.但一些对搜索的优化,例如\(A\)*,迭代加深依旧会不时出现.本文讨论另一种搜索--折半搜索\((meet ...

  3. Meet in the middle学习笔记

    Meet in the middle(MITM) Tags:搜索 作业部落 评论地址 PPT中会讲的很详细 当搜索的各项互不影响(如共\(n\)个物品前\(n/2\)个物品选不选和后\(n/2\)个物 ...

  4. 【BZOJ4800】[Ceoi2015]Ice Hockey World Championship Meet in the Middle

    [BZOJ4800][Ceoi2015]Ice Hockey World Championship Description 有n个物品,m块钱,给定每个物品的价格,求买物品的方案数. Input 第一 ...

  5. Meet in the middle算法总结 (附模板及SPOJ ABCDEF、BZOJ4800、POJ 1186、BZOJ 2679 题解)

    目录 Meet in the Middle 总结 1.算法模型 1.1 Meet in the Middle算法的适用范围 1.2Meet in the Middle的基本思想 1.3Meet in ...

  6. 「10.13」毛一琛(meet in the middle)·毛二琛(DP)·毛三琛(二分+随机化???)

    A. 毛一琛 考虑到直接枚举的话时间复杂度很高,我们运用$meet\ in\ the\ middle$的思想 一般这种思想看似主要用在搜索这类算法中 发现直接枚举时间复杂度过高考虑枚举一半另一半通过其 ...

  7. meet in the middle 复习笔记

    前言 若干年前看过现在又忘了.这么简单都忘 所以今天来重新复习一下. 正题 考虑这样的问题: 给定 \(n\) 个物品的价格,你有 \(m\) 块钱,每件物品限买一次,求买东西的方案数. \(n\le ...

  8. 浅谈Meet in the middle——MITM

    目测观看人数 \(0+0+0=0\) \(\mathrm{Meet\;in\;the\;middle}\)(简称 \(\rm MITM\)),顾名思义就是在中间相遇. 可以理解为就是起点跑搜索树基本一 ...

  9. SPOJ4580 ABCDEF(meet in the middle)

    题意 题目链接 Sol 发现abcdef是互不相关的 那么meet in the middle一下.先算出abc的,再算def的 注意d = 0的时候不合法(害我wa了两发..) #include&l ...

随机推荐

  1. 程序中的文件之沙盒以及plist文件的初步使用

    沙盒是相对于"应用程序"的文件,也就是相相应app所在的页面的文件. 每个应用都有自己的应用沙盒(应用沙盒就是文件系统文件夹).与其它文件系统隔离.应用必须呆在在积极的沙盒中.其它 ...

  2. 我的红外arduino链接,!!!!

    点击打开链接http://blog.csdn.net/g1342522389/article/details/46272473 一定要赞,小编非常辛苦.

  3. java中tcp小样例

    服务端: ServerSocket service = new ServerSocket(7777); Socket socket = service.accept(); InputStream in ...

  4. 设计模式C++实现——组合模式

    模式定义: 组合模式同意你将对象组合成树形结构来表现"总体/部分"层次结构.组合能让客户以一致的方式处理个别对象以及对象组合. 这个模式可以创建一个树形结构,在同一个结构中处理嵌套 ...

  5. linux下安装rar解压包

    直接解压时出现的问题如下 原因:使用rar命令需要安装WinRAR 1.在本机下载好解压,然后将解压包拖到linux上 2.进行安装,在rar目录想直接make

  6. Qt由pcm数据生成wav文件

    void AudioGrabber::saveWave(const QString &fileName, const QByteArray &raw, const QAudioForm ...

  7. Mina airQQ聊天开门见山篇(一)

    Mina airQQ聊天开门见山篇(一) 近期项目可能要用到Mina,这个礼拜就在看这个框架,所以想写个小小的聊天的demo来巩固下,打算用几篇博客来记录下相关的知识 client用的是Flex Ai ...

  8. camera table表编译

    mmm -j8 vendor/mediatek/proprietary/hardware/mtkcam/v1/common/paramsmgr/ 2>&1 | tee ft.lib.lo ...

  9. Android平台Overlay机制【转】

    本文转载自:http://blog.csdn.net/wh_19910525/article/details/39254815 Android overlay 机制允许在不修改packages中apk ...

  10. DNS 隐蔽通道工具资料汇总

    http://www.cnblogs.com/bonelee/p/7651746.html DNS隧道和工具 内含dns2tcp.iodine.dnscat2工具的简单使用说明 iodine工具的使用 ...