题意:49/98是一个有趣的分数,因为可能在化简时错误地认为,等式49/98 = 4/8之所以成立,是因为在分数线上下同时抹除了9的缘故。分子分母是两位数且分子小于分母的这种有趣的分数有4个,将这四个分数的乘积写成最简分数,求此时分母的值。

思路:直接枚举判断即可,需要注意 11/22 这种类型的数


/*************************************************************************
> File Name: euler033.c
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年06月25日 星期日 16时44分46秒
************************************************************************/ #include <stdio.h>
#include <inttypes.h> int64_t gcd(int64_t a , int64_t b) {
return b == 0 ? a : gcd(b , a % b);
}
bool check(int64_t x , int64_t y) {
int64_t d = gcd(x , y);
if( (x % 10) == (x / 10) || (y % 10) == (y / 10) ) return false;
return (((x / d) * (y % 10)) == ((y / d) * (x / 10))) && ((x % 10) == (y / 10));
}
int32_t main() {
int64_t mol = 1 , den = 1;
for(int32_t i = 10 ; i < 99 ; i++){
for(int32_t j = i + 1 ; j <= 99 ; j++){
if( check(i , j) ) {
printf("i = %d , j = %d\n",i,j);
mol *= (int64_t)i; den *= (int64_t)j;
}
}
}
printf("%"PRId64"\n", den / gcd(mol , den));
return 0;
}

Project Euler 33 Digit cancelling fractions的更多相关文章

  1. Project Euler:Problem 33 Digit cancelling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  2. Project Euler 34 Digit factorials

    题意:判断一个数 N 的各个位数阶乘之和是否为其本身,找出所有符合要求的数然后求和 思路:此题思路跟 30 题相同,找到枚举上界 10 ^ n <= 9! × n ,符合要求的 n < 6 ...

  3. Project Euler 30 Digit fifth powers

    题意:判断一个数 N 的每一位的5次方的和是否为其本身 ,求出所有满足条件的数的和 思路:首先设这个数 N 为 n 位,可以简单的判断一下这个问题的上界 10 ^ n <= 9 ^ 5 × n, ...

  4. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  5. Python练习题 047:Project Euler 020:阶乘结果各数字之和

    本题来自 Project Euler 第20题:https://projecteuler.net/problem=20 ''' Project Euler: Problem 20: Factorial ...

  6. Python练习题 044:Project Euler 016:乘方结果各个数值之和

    本题来自 Project Euler 第16题:https://projecteuler.net/problem=16 ''' Project Euler 16: Power digit sum 2* ...

  7. Python练习题 039:Project Euler 011:网格中4个数字的最大乘积

    本题来自 Project Euler 第11题:https://projecteuler.net/problem=11 # Project Euler: Problem 10: Largest pro ...

  8. [project euler] program 4

    上一次接触 project euler 还是2011年的事情,做了前三道题,后来被第四题卡住了,前面几题的代码也没有保留下来. 今天试着暴力破解了一下,代码如下: (我大概是第 172,719 个解出 ...

  9. Python练习题 029:Project Euler 001:3和5的倍数

    开始做 Project Euler 的练习题.网站上总共有565题,真是个大题库啊! # Project Euler, Problem 1: Multiples of 3 and 5 # If we ...

随机推荐

  1. DJANGO里让用户自助修改密码

    参考了网上的实现,最终实现的各代码如下: changepwd.html模板文件: {% extends "Prism/index.html" %} {% load staticfi ...

  2. [Project]微信项目感悟

    一定要先考虑好可复用部分,可以复制粘贴的地方 一定要先想好了在动 前台不同插件之间的兼容性问题可能是dom加载顺序的问题,有的代码可能要卸载其中一个插件的某个事件里

  3. HDU 4513 manacher

    Manacher算法,相当于求回文串. 关于Manacher,转 http://blog.sina.com.cn/s/blog_70811e1a01014esn.html 现在进入正题:首先,在字符串 ...

  4. Tomcat扩展——监控

    (转过来,源地址:http://www.jmatrix.org/notes/1067.html) 近期心血来潮.想能否够通过添加一个tomcat的扩展,来持续收集tomcatserver本身的性能信息 ...

  5. @RequiresPermissions 注解说明

    @RequiresAuthentication验证用户是否登录,等同于方法subject.isAuthenticated() 结果为true时.@RequiresUser验证用户是否被记忆,user有 ...

  6. POJ 1166 The Clocks (暴搜)

    发现对这样的模拟题根本没啥思路了,本来准备用bfs的.可是结果超时了,这是參考别的人代码写的: #include <stdio.h> #include <iostream> # ...

  7. 杭电1879继续畅通project

    继续畅通project Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Tota ...

  8. Selenium实例----12306网站测试

    http://blog.csdn.net/xc5683/article/details/9629827

  9. 【cl】控制台执行Java程序

    1.设置CLASSPATH环境变量,指向package所在的目录,一般是项目文件夹的bin目录 2.执行 java  package.ClassName linux: 方法一: 步骤1:export ...

  10. 什么是Spark?

    什么是Spark Spark是一个基于内存计算的开源的集群计算系统,目的是让数据分析更加高速.Spark很小巧玲珑,由加州伯克利大学AMP实验室的Matei为主的小团队所开发. 使用的语言是Scala ...