Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 1851 Accepted Submission(s): 1065

Problem Description

After hh has learned how to play Nim game, he begins to try another coin game which seems much easier.

The game goes like this:

Two players start the game with a circle of n coins.

They take coins from the circle in turn and every time they could take 1~K continuous coins.

(imagining that ten coins numbered from 1 to 10 and K equal to 3, since 1 and 10 are continuous, you could take away the continuous 10 , 1 , 2 , but if 2 was taken away, you couldn’t take 1, 3, 4, because 1 and 3 aren’t continuous)

The player who takes the last coin wins the game.

Suppose that those two players always take the best moves and never make mistakes.

Your job is to find out who will definitely win the game.

Input

The first line is a number T(1<=T<=100), represents the number of case. The next T blocks follow each indicates a case.

Each case contains two integers N(3<=N<=109,1<=K<=10).

Output

For each case, output the number of case and the winner “first” or “second”.(as shown in the sample output)

Sample Input

2

3 1

3 2

Sample Output

Case 1: first

Case 2: second

【题目链接】:http://acm.hdu.edu.cn/showproblem.php?pid=3951

【题解】



会发现如果k!=1

先手不管怎样选一段;

我们总能在这n个硬币所围成的对角线上选取同样的一段(或者比它多一个或少一个->n为奇数的情况);这样就分成了两段硬币;

这两段硬币的个数相同;

->如果对应两个游戏的话,对应的sg函数必然是相同的;

则sg[x]^sg[x]==0

所以先手输;

我们总能让第一个人面对这种情况;

所以第一个人总是输的;

但是k=1的时候就不一定可以;

只有当n为偶数的时候第一个人输;n为奇数的话第一个人无论如何都会赢的.



【完整代码】

#include <bits/stdc++.h>
using namespace std;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define LL long long
#define rep1(i,a,b) for (int i = a;i <= b;i++)
#define rep2(i,a,b) for (int i = a;i >= b;i--)
#define mp make_pair
#define pb push_back
#define fi first
#define se second
#define rei(x) scanf("%d",&x)
#define rel(x) scanf("%I64d",&x) typedef pair<int,int> pii;
typedef pair<LL,LL> pll; //const int MAXN = x;
const int dx[9] = {0,1,-1,0,0,-1,-1,1,1};
const int dy[9] = {0,0,0,-1,1,-1,1,-1,1};
const double pi = acos(-1.0); int T; int main()
{
//freopen("F:\\rush.txt","r",stdin);
rei(T);
rep1(ii,1,T)
{
int n,k;
rei(n);rei(k);
printf("Case %d: ",ii);
if (k>=n || (k==1 && n&1))
puts("first");
else
puts("second");
}
return 0;
}

【hdu 3951】Coin Game的更多相关文章

  1. 【数位dp】【HDU 3555】【HDU 2089】数位DP入门题

    [HDU  3555]原题直通车: 代码: // 31MS 900K 909 B G++ #include<iostream> #include<cstdio> #includ ...

  2. 【HDU 5647】DZY Loves Connecting(树DP)

    pid=5647">[HDU 5647]DZY Loves Connecting(树DP) DZY Loves Connecting Time Limit: 4000/2000 MS ...

  3. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  4. 【HDU 2196】 Computer(树的直径)

    [HDU 2196] Computer(树的直径) 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 这题可以用树形DP解决,自然也可以用最直观的方法解 ...

  5. 【HDU 2196】 Computer (树形DP)

    [HDU 2196] Computer 题链http://acm.hdu.edu.cn/showproblem.php?pid=2196 刘汝佳<算法竞赛入门经典>P282页留下了这个问题 ...

  6. 【HDU 5145】 NPY and girls(组合+莫队)

    pid=5145">[HDU 5145] NPY and girls(组合+莫队) NPY and girls Time Limit: 8000/4000 MS (Java/Other ...

  7. 【hdu 3537】Daizhenyang's Coin

    Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  8. 【hdu 1043】Eight

    [题目链接]:http://acm.hdu.edu.cn/showproblem.php?pid=1043 [题意] 会给你很多组数据; 让你输出这组数据到目标状态的具体步骤; [题解] 从12345 ...

  9. 【HDU 3068】 最长回文

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=3068 [算法] Manacher算法求最长回文子串 [代码] #include<bits/s ...

随机推荐

  1. C#string转换为Datetime

    DateTime.ParseExact("0710090000", "MMddHHmmss", CultureInfo.CurrentCulture, Date ...

  2. 1.1 Introduction中 Apache Kafka™ is a distributed streaming platform. What exactly does that mean?(官网剖析)(博主推荐)

    不多说,直接上干货! 一切来源于官网 http://kafka.apache.org/documentation/ Apache Kafka™ is a distributed streaming p ...

  3. C#正则表达式匹配HTML中的图片路径,图片地址

    C#正则表达式匹配HTML中的图片路径,图片地址 最近的项目中有个关于网页取图的功能需要我自己开发,那就是用正则表达式来匹配图片标签.       一般来说一个 HTML 文档有很多标签,比如“< ...

  4. Anaconda的安装

    Windows下Anaconda的安装和简单使用 Anaconda is a completely free Python distribution (including for commercial ...

  5. css选择器.md

    css选择器总结 1.元素选择器 如:*{},body{},p{} ; xml中note{},to{},from{} 2.class与id选择器 如:.class{},#id{} 3.伪类选择器 选择 ...

  6. 【Codeforces Round #435 (Div. 2) B】Mahmoud and Ehab and the bipartiteness

    [链接]h在这里写链接 [题意] 让你在一棵树上,加入尽可能多的边. 使得这棵树依然是一张二分图. [题解] 让每个节点的度数,都变成二分图的对方集合中的点的个数就好. [错的次数] 0 [反思] 在 ...

  7. 在scala中调用java代码

      详细代码请见https://github.com/lujinhong/scalademo 在scala中调用java代替非常非常简单,直接调用即可 (一)一个简单示例 1.创建一个java类 pa ...

  8. TreeView控件的展开与折叠

    在窗体中添加一个TreeView控件,设置CheckBox属性为True,绑定数据 Archive jkj = new Archive();//自定义类        public void Bind ...

  9. 在此页上的 ActiveX 控件和本页上的其它部份的交互可能不安全

    版权声明:转载时请以超链接形式标明文章原始出处和作者信息http://xqy266.blogbus.com/logs/66258230.html 在EOS6的项目中,如果采用VC++开发的Active ...

  10. Satisfying memory ordering requirements between partial reads and non-snoop accesses

    A method and apparatus for preserving memory ordering in a cache coherent link based interconnect in ...