halcon 模板匹配 -- 转化 vector_angle_to_rigid
********************************模板匹配 ********************
create_shape_model
创建模板,这个函数有许多参数,其中金字塔的级数由Numlevels指定,值越大则找到物体的时间越少,AngleStart和AngleExtent决定可能的旋转范围,AngleStep指定角度范围搜索的步长;这里需要提醒的是,在任何情况下,模板应适合主内存,搜索时间会缩短。对特别大的模板,用Optimization来减少模板点的数量是很有用的;MinConstrast将模板从图像的噪声中分离出来,如果灰度值的波动范围是10,则MinConstrast应当设为10;Metric参数决定模板识别的条件,如果设为’use_polarity’,则图像中的物体和模板必须有相同的对比度;创建好模板后,这时还需要监视模板,用inspect_shape_model()来完成,它检查参数的适用性,还能帮助找到合适的参数;另外,还需要获得这个模板的轮廓,用于后面的匹配,get_shape_model_contours()则会很容易的帮我们找到模板的轮廓;
create_shape_model_xld
find_shape_model
它也拥有许多的参数,这些参数都影响着寻找模板的速度和精度。这个的功能就是在一幅图中找出最佳匹配的模板,返回一个模板实例的长、宽和旋转角度。其中参数SubPixel决定是否精确到亚像素级,设为’interpolation’,则会精确到,这个模式不会占用太多时间,若需要更精确,则可设为’least_square’,’lease_square_high’,但这样会增加额外的时间,因此,这需要在时间和精度上作个折中,需要和实际联系起来。比较重要的两个参数是MinSocre和Greediness,前一个用来分析模板的旋转对称和它们之间的相似度,值越大,则越相似,后一个是搜索贪婪度,这个值在很大程度上影响着搜索速度,若为0,则为启发式搜索,很耗时,若为1,则为不安全搜索,但最快。在大多数情况下,在能够匹配的情况下,尽可能的增大其值。
vector_angle_to_rigid
affine_trans_contour_xld
找到之后,还需要对其进行转化,使之能够显示,这两个函数vector_angle_to_rigid()和affine_trans_contour_xld()在这里就起这个作用。前一个是从一个点和角度计算一个刚体仿射变换,这个函数从匹配函数的结果中对构造一个刚体仿射变换很有用,把参考图像变为当前图像
基于形状匹配的参数关系与优化
在HALCON的说明资料里讲到了这些参数的作用以及关系,在上面提到的文章中也作了介绍,这里主要是重复说明一下这些参数的作用,再强调一下它们影响匹配速度的程度;
在为了提高速度而设置参数之前,有必要找出那些在所有测试图像中匹配成功的设置,这时需考虑以下情况:
① 必须保证物体在图像边缘处截断,也就是保证轮廓的清晰,这些可以通过形态学的一些方法来处理;
② 如果Greediness值设的太高,就找不到其中一些可见物体,这时最后将其设为0来执行完全搜索;
③ 物体是否有封闭区域,如果要求物体在任何状态下都能被识别,则应减小MinScore值;
④ 判断在金字塔最高级上的匹配是否失败,可以通过find_shape_model()减小NumLevels值来测试;
⑤ 物体是否具有较低的对比度,如果要求物体在任何状态下都能被识别,则应减小MinContrast值;
⑥ 判断是否全局地或者局部地转化对比度极性,如果需要在任何状态下都能被识别,则应给参数Metric设置一个合适的值;
⑦ 物体是否与物体的其他实例重叠,如果需要在任何状态下都能识别物体,则应增加MaxOverlap值;
⑧ 判断是否在相同物体上找到多个匹配值,如果物体几乎是对称的,则需要控制旋转范围;
如何加快搜索匹配,需要在这些参数中进行合理的搭配,有以下方法可以参考:
① 只要匹配成功,则尽可能增加参数MinScore的值;
② 增加Greediness值直到匹配失败,同时在需要时减小MinScore值;
③ 如果有可能,在创建模板时使用一个大的NumLevels,即将图像多分几个金字塔级;
④ 限定允许的旋转范围和大小范围,在调用find_shape_model()时调整相应的参数;
⑤ 尽量限定搜索ROI的区域;
除上面介绍的以外,在保证能够匹配的情况下,尽可能的增大Greediness的值,因为在后面的实验中,用模板匹配进行视频对象跟踪的过程中,这个值在很大程度上影响到匹配的速度。
当然这些方法都需要跟实际联系起来,不同图像在匹配过程中也会有不同的匹配效果,在具体到某些应用,不同的硬件设施也会对这个匹配算法提出新的要求,所以需要不断地去尝试。
********************************模板匹配 ********************
halcon 模板匹配 -- 转化 vector_angle_to_rigid的更多相关文章
- halcon模板匹配
在机器视觉应用中,经常需要对图像进行仿射变换.1.在基于参考的视觉检测中,由于待检图像与参考图像或多或少都会存在几何变化(平移.旋转.缩放等),所以在做比较之前一般都要对待检图像进行仿射变换以对齐图像 ...
- halcon 模板匹配(最简单)
模板匹配是机器视觉工业现场中较为常用的一种方法,常用于定位,就是通过算法,在新的图像中找到模板图像的位置.例如以下两个图像. 这种模板匹配是最基本的模板匹配.其特点只是存在平移旋转,不存在尺度变化 ...
- 重新看halcon模板匹配
工业中模板匹配有很多需求. 代码如下: read_image (Image, 'J:/测试图片/test1/1.bmp') get_image_size (Image, Width, Height) ...
- Halcon 模板匹配实战代码(一)
模板图片:目标是获取图像左上角位置的数字 直接想法,直接用一个框将数字框出来,然后对图片进行模板匹配(不可行,因为图像中的数字不是固定的) 所以需要选择图像中的固定不变的区域来作为模板,然后根据模板区 ...
- halcon 模板匹配 -- find_shape_model
find_shape_model(Image : : //搜索图像 ModelID, //模板句柄 AngleStart, // 搜索时的起始角度 AngleExtent, //搜索时的角度范围, ...
- halcon 模板匹配 -- create_shape_model
create_shape_model(Template : : //reduce_domain后的模板图像 NumLevels,//金字塔的层数,可设为“auto”或0—10的整数 AngleStar ...
- 基于HALCON的模板匹配方法总结
注:很抱歉,忘记从转载链接了,作者莫怪.... 基于HALCON的模板匹配方法总结 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总是抽不出时间.去年有过一段时间的集中学习,做了许多 ...
- 转载:基于HALCON的模板匹配方法总结
转载链接: http://blog.csdn.net/b108074013/article/details/37657801 很早就想总结一下前段时间学习HALCON的心得,但由于其他的事情总 ...
- Halcon编程-基于形状特征的模板匹配
halcon软件最高效的一个方面在于模板匹配,号称可以快速进行柔性模板匹配,能够非常方便的用于缺陷检测.目标定位.下面以一个简单的例子说明基于形状特征的模板匹配. 为了在右图中,定位图中的三 ...
随机推荐
- STM32串口通信配置(USART1+USART2+USART3+UART4)
一.串口一的配置(初始化+中断配置+中断接收函数) 1 /*====================================================================== ...
- 【Codeforces 158A】Next Round
[链接] 我是链接,点我呀:) [题意] 让你找到排名的前k名,并列的话,如果分数大于0那么就算晋级 问你最后有多少人可以晋级. [题解] 按照题意模拟就好, 先按照a[max] = a[k]的规则找 ...
- Win8.1 Hyper-V 共享本机IP上网
公司的Win8.1自带了Hyper v,可是死活连接不到网络. 原因是公司只给每人分配一个局域网IP,而默认情况下Hyper-V的虚拟机会动态分配了一个没有经过MIS人员许可的IP…… 百度了N久解决 ...
- libcloud代码研究(三)——bugs
Bug 1:对不可迭代类进行迭代(libcloud.storage.driver.cloudfile line. 141-142) 使用libcloud连接自搭建swift服务,自己在服务器 ...
- L - 贪心 基础
Once upon a time, in the Kingdom of Loowater, a minor nuisance turned into a major problem. The shor ...
- 固定一个div在浏览器底部
转自原文 如何固定一个div在浏览器底部 方法1:使用CSS绝对定位 div{ position:absolute; bottom:0px; left:0px; } 方法2:使用CSS固定定位 d ...
- volatile非原子性示例
volatile非原子性示例 学习了:<Java多线程编程核心技术>高洪岩 著 Page124 package com.stono.thread2.page124_2; public cl ...
- oracle 学习笔记之触发器
说明 数据库触发器是一个与表相关联的.存储的PL/SQL程序. 每当一个特定的数据操作语句(Insert,update,delete)在指定的表上发出时,Oracle自己主动地运行触发器中定义的语句序 ...
- Linux/CentOS各种服务框架的搭建完整流程
在2012年的时候,由于要照应新人对Linux以及相关服务的了解和学习,我特地把当时我们创业项目的全部服务搭建过程写成了一篇文档,能够让他们学习而且有所參照. 以下就以这篇文档为底稿,进行一些改动和敏 ...
- [Android]Fragment源代码分析(三) 事务
Fragment管理中,不得不谈到的就是它的事务管理,它的事务管理写的很的出彩.我们先引入一个简单经常使用的Fragment事务管理代码片段: FragmentTransaction ft = thi ...