题意:

求f(n)=∑gcd(i, N) 1<=i <=N.

分析:

f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d | n}phi(n / d) * d ,后者是积性函数),能够这么解释:当d是n的因子时,设1至n内有a1,a2,..ak满足gcd(n,ai)==d,那么d这个因子贡献是d*k,接下来证明k=phi(n/d):设gcd(x,n)==d,那么gcd(x/d,n/d)==1,所以满足条件的x/d数目为phi(n/d),x的数目也为phi(n/d)。

代码:

<pre name="code" class="cpp">//poj 2480
//sep9
/*
f(pi^ai) = Φ(pi^ai)+pi*Φ(pi^(ai-1))+pi^2*Φ(pi^(ai-2))+...+pi^(ai-1)* Φ(pi)+ pi^ai *Φ(1)
= pi^(ai-1)*(pi-1) + pi*pi^(ai-2)*(pi-1)....+pi^ai
= pi^ai*(1+ai*(1-1/pi))
f(n) = p1^a1*p2^a2...*pr^ar*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*...
= n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*... */
#include <iostream>
using namespace std;
typedef long long ll; int main()
{
ll n;
while(scanf("%lld",&n)==1){
ll ans=n;
for(ll i=2;i*i<=n;++i){
if(n%i==0){
ll a=0,p=i;
while(n%p==0){
++a;
n/=p;
}
ans=ans+ans*a*(p-1)/p;
}
}
if(n!=1)
ans=ans+ans*(n-1)/n;
printf("%I64d\n",ans);
}
return 0;
}

poj 2480 Longge&#39;s problem 积性函数性质+欧拉函数的更多相关文章

  1. POJ 2480 Longge&#39;s problem 积性函数

    题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...

  2. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  3. POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】

    题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...

  4. Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...

  5. 欧拉函数 &【POJ 2478】欧拉筛法

    通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k ...

  6. 由 [SDOI2012]Longge的问题 探讨欧拉函数和莫比乌斯函数的一些性质和关联

    本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞 ...

  7. Relatives POJ - 2407 欧拉函数

    题意: 给你一个正整数n,问你在区间[1,n)中有多少数与n互质 题解: 1既不是合数也不是质数(1不是素数) 互质是公约数只有1的两个整数,叫做互质整数.公约数只有1的两个自然数,叫做互质自然数 所 ...

  8. 题解报告:poj 2480 Longge's problem(欧拉函数)

    Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...

  9. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

随机推荐

  1. 在线运行python代码-python代码运行助手

    https://www.liaoxuefeng.com/wiki/0014316089557264a6b348958f449949df42a6d3a2e542c000/001432523496782e ...

  2. python Web抓取(一)[没写完]

    需要的模块: python web抓取通过: webbrowser:是python自带的,打开浏览器获取指定页面 requests:从因特网上下载文件和网页 Beautiful Soup:解析HTML ...

  3. iOS多线程与网络开发之多线程GCD

    郝萌主倾心贡献,尊重作者的劳动成果.请勿转载. 假设文章对您有所帮助,欢迎给作者捐赠.支持郝萌主.捐赠数额任意.重在心意^_^ 我要捐赠: 点击捐赠 Cocos2d-X源代码下载:点我传送 游戏官方下 ...

  4. 微软CEO纳德拉拥抱Linux意欲何为?

    "我不喜欢打一场过时的战争."微软 CEO 萨蒂亚·纳德拉说道,"我想要打一场全新的战役." 上周日晚上.萨蒂亚·纳德拉来到旧金山 North Beach 区的 ...

  5. apiCloud手动检测更新

    有时候需要给用户一个自主的权利,自主检测app是否是最新版本. 如何实现? 1.点击调用接口,检测是否有更新. 默认APICloud会自动检测版本更新,用户也可以在config.xml里配置autoU ...

  6. jquery easyui 输入框 禁止输入负数 设置属性data-options="min:0,required:true"

    jquery easyui  输入框 禁止输入负数  设置属性data-options="min:0,required:true" <input id="days& ...

  7. matlab中plot画图参数的设置

    原文链接:http://blog.sciencenet.cn/blog-281551-573856.html 一.Matlab绘图中用到的直线属性包括: (1)LineStyle:线形 (2)Line ...

  8. Beautiful Number

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=2829 Beautiful Number Time Limit: 2 Sec ...

  9. 手动删除oracle数据库

    --===================== -- 手动删除oracle数据库 --===================== 杀掉进程用此方法比较好,能保证杀得干净,而不是用sql 里面的语句ki ...

  10. Multi-process Resource Loading

    For Developers‎ > ‎Design Documents‎ > ‎ Multi-process Resource Loading 目录 1 This design doc n ...