题意:

求f(n)=∑gcd(i, N) 1<=i <=N.

分析:

f(n)是积性的数论上有证明(f(n)=sigma{1<=i<=N} gcd(i,N) = sigma{d | n}phi(n / d) * d ,后者是积性函数),能够这么解释:当d是n的因子时,设1至n内有a1,a2,..ak满足gcd(n,ai)==d,那么d这个因子贡献是d*k,接下来证明k=phi(n/d):设gcd(x,n)==d,那么gcd(x/d,n/d)==1,所以满足条件的x/d数目为phi(n/d),x的数目也为phi(n/d)。

代码:

<pre name="code" class="cpp">//poj 2480
//sep9
/*
f(pi^ai) = Φ(pi^ai)+pi*Φ(pi^(ai-1))+pi^2*Φ(pi^(ai-2))+...+pi^(ai-1)* Φ(pi)+ pi^ai *Φ(1)
= pi^(ai-1)*(pi-1) + pi*pi^(ai-2)*(pi-1)....+pi^ai
= pi^ai*(1+ai*(1-1/pi))
f(n) = p1^a1*p2^a2...*pr^ar*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*...
= n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*... */
#include <iostream>
using namespace std;
typedef long long ll; int main()
{
ll n;
while(scanf("%lld",&n)==1){
ll ans=n;
for(ll i=2;i*i<=n;++i){
if(n%i==0){
ll a=0,p=i;
while(n%p==0){
++a;
n/=p;
}
ans=ans+ans*a*(p-1)/p;
}
}
if(n!=1)
ans=ans+ans*(n-1)/n;
printf("%I64d\n",ans);
}
return 0;
}

poj 2480 Longge&#39;s problem 积性函数性质+欧拉函数的更多相关文章

  1. POJ 2480 Longge&#39;s problem 积性函数

    题目来源:id=2480" style="color:rgb(106,57,6); text-decoration:none">POJ 2480 Longge's ...

  2. POJ 2480 Longge's problem (积性函数,欧拉函数)

    题意:求∑gcd(i,n),1<=i<=n思路:f(n)=∑gcd(i,n),1<=i<=n可以知道,其实f(n)=sum(p*φ(n/p)),其中p是n的因子.为什么呢?原因 ...

  3. POJ_2480 Longge's problem【积性函数+欧拉函数的理解与应用】

    题目: Longge is good at mathematics and he likes to think about hard mathematical problems which will ...

  4. Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...

  5. 欧拉函数 &【POJ 2478】欧拉筛法

    通式: $\phi(x)=x(1-\frac{1}{p_1})(1-\frac{1}{p_2})(1-\frac{1}{p_3}) \cdots (1-\frac{1}{p_n})$ 若n是质数p的k ...

  6. 由 [SDOI2012]Longge的问题 探讨欧拉函数和莫比乌斯函数的一些性质和关联

    本题题解 题目传送门:https://www.luogu.org/problem/P2303 给定一个整数\(n\),求 \[ \sum_{i=1}^n \gcd(n,i) \] 蒟蒻随便yy了一下搞 ...

  7. Relatives POJ - 2407 欧拉函数

    题意: 给你一个正整数n,问你在区间[1,n)中有多少数与n互质 题解: 1既不是合数也不是质数(1不是素数) 互质是公约数只有1的两个整数,叫做互质整数.公约数只有1的两个自然数,叫做互质自然数 所 ...

  8. 题解报告:poj 2480 Longge's problem(欧拉函数)

    Description Longge is good at mathematics and he likes to think about hard mathematical problems whi ...

  9. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

随机推荐

  1. 一个Web报表项目的性能分析和优化实践(一):小试牛刀,统一显示SQL语句执行时间

    最近,在开发和优化一个报表型的Web项目,底层是Hibernate和MySQL. 当报表数据量大的时候,一个图表要花4秒以上的时间. 以下是我的分析和体会.  1.我首先需要知道哪些函数执行了多少时间 ...

  2. 题解 CF1000E 【We Need More Bosses】

    这道题绝不是紫题... 题目的意思其实是让你求一个无向无重边图的直径. 对于求直径的问题我们以前研究过树的直径,可以两遍dfs或者两边bfs解决. 对于图显然不能这样解决,因为图上两点之间的简单路径不 ...

  3. 洛谷—— P1969 积木大赛

    https://www.luogu.org/problem/show?pid=1969 题目描述 春春幼儿园举办了一年一度的“积木大赛”.今年比赛的内容是搭建一座宽度为n的大厦,大厦可以看成由n块宽度 ...

  4. 基于BP神经网络的简单字符识别算法自小结(C语言版)

    本文均属自己阅读源代码的点滴总结.转账请注明出处谢谢. 欢迎和大家交流.qq:1037701636 email:gzzaigcn2009@163.com 写在前面的闲话: 自我感觉自己应该不是一个非常 ...

  5. android CoordinatorLayout使用

    一.CoordinatorLayout有什么作用 CoordinatorLayout作为“super-powered FrameLayout”基本实现两个功能: 1.作为顶层布局 2.调度协调子布局 ...

  6. POJ 3181完全背包(+高精)

    思路: f[i]表示还剩i空间的方案数 套个高精 (网上有人把它拆成了两个long long) 其实这道题的高精并不难写-.. //By SiriusRen #include <cstdio&g ...

  7. Linux安全应用之防垃圾邮件服务器的构建

    Linux安全应用之防垃圾邮件服务器的构建 一.垃圾邮件产生的原因 垃圾邮件(SPAM) 也称作UCE(Unsoticited Commercial Email.未经许可的商业电子邮件)或UBE(Un ...

  8. python单元测试-unittest

    python内部自带了一个单元测试的模块,pyUnit也就是我们说的:unittest 1.介绍下unittest的基本使用方法: 1)import unittest 2)定义一个继承自unittes ...

  9. CentOS 安装openssl

    https://blog.csdn.net/ydyang1126/article/details/72902113 安装环境: 操作系统:CentOS 7 OpenSSL Version:openss ...

  10. MD5解密(常用语登录密码加密)

    http://pmd5.com/