题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和

先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果

看了Po姐的题解(Orzzz)才搞懂这道题,搞清楚了莫比乌斯反演的两种经典的卷积形式的不同之处

令$\sigma(i)$表示i的约数和

如果去掉A这个限制,则题目是让我们求$\sum_{i=1}^{n}\sum_{j=1}^{m}\sigma(gcd(i,j))$

考虑如何正确转化式子,让我们能够把不大于A这个限制加上去,再用某种数据结构快速维护,否则我们转化的式子就是失败的

令$f(i)$表示$i$作为$gcd$出现的次数,利用莫比乌斯反演的常规套路,可得$f(i)=\sum_{i|d}\mu(d/i)\left \lfloor \frac{n}{d} \right \rfloor\left \lfloor \frac{m}{d} \right \rfloor$

这样,再接下来的变形中,可以把d提到前面去,我们就能对d的范围进行限制了

那么结果$ans=\sum f(i)\sigma(i)$

展开得$ans=\sum_{i=1}^{n} \sigma(i)\sum_{i|d}\mu(d/i)\left \lfloor \frac{n}{d} \right \rfloor\left \lfloor \frac{m}{d} \right \rfloor$

移项$ans=\sum _{d=1}^{\sigma(d)<=A} \left \lfloor \frac{n}{d} \right \rfloor\left \lfloor \frac{m}{d} \right \rfloor \sum_{i|d}\mu(d/i)\sigma(i)$

对于前面的部分,对询问离线,按A从小到大排序,从小到大遍历即可$\sum _{d=1}^{\sigma(d)<=A} \left \lfloor \frac{n}{d} \right \rfloor\left \lfloor \frac{m}{d} \right \rfloor$

对于后面的部分$\sum_{i|d}\mu(d/i)\sigma(i)$当前询问的A大于等于$\sigma(i)$时,我们就要把i的贡献加进去,即所有能整除$i$的数的位置都要加上$\mu(d/i)\sigma(i)$

因为$\sigma(i)$并不具有单调性,所以需要用树状数组维护前缀和,可以暴力往树状数组里插入,因为总插入次数是$O(nlnn)$(调和级数)

接着对于每个询问,利用整除分块的思想求解即可

总时间$O(nlog^{2}n+Q\sqrt{n}logn)$,有点卡常,建议用unsigned int

 #include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100100
#define maxn 100000
#define ll long long
#define uint unsigned int
using namespace std; const uint mod=2147483648ll;
int T,cnt;
int use[N],pr[N],mu[N],nxt[N];
uint sum[N];
ll sgm[N];
struct node{ll s;int id;}a[N];
int cmp1(node s1,node s2){return s1.s<s2.s;}
struct Ques{int n,m,A,id;ll ans;}Q[N];
int cmp2(Ques s1,Ques s2){return s1.A<s2.A;}
int cmp3(Ques s1,Ques s2){return s1.id<s2.id;} void update(int x,uint w){for(int i=x;i<=maxn;i+=(i&(-i)))(sum[i]+=w)%=mod;}
uint query(int x){uint ans=;for(int i=x;i>;i-=(i&(-i)))(ans+=sum[i])%=mod;return ans;}
void Pre()
{
mu[]=;
for(int i=;i<=maxn;i++)
{
if(!use[i]) pr[++cnt]=i,mu[i]=-,nxt[i]=i;
for(int j=;j<=cnt&&i*pr[j]<=maxn;j++){
use[i*pr[j]]=;
nxt[i*pr[j]]=pr[j];
if(i%pr[j]==){
mu[i*pr[j]]=;
break;
}else{
mu[i*pr[j]]=-mu[i];
}
}
}
for(int i=;i<=maxn;i++)
for(int j=i;j<=maxn;j+=i)
sgm[j]+=i;
for(int i=;i<=maxn;i++)
a[i].s=sgm[i],a[i].id=i;
sort(a+,a+maxn+,cmp1);
} int main()
{
//freopen("t1.in","r",stdin);
scanf("%d",&T);
Pre();
int x,y,z;
for(int t=;t<=T;t++)
{
scanf("%d%d%d",&Q[t].n,&Q[t].m,&Q[t].A);
Q[t].id=t;
}
sort(Q+,Q+T+,cmp2);
int k=;
for(int t=;t<=T;t++)
{
while(k<=maxn&&a[k].s<=Q[t].A){
int i=a[k].id;
for(int j=i;j<=maxn;j+=i)
update(j,sgm[i]*mu[j/i]%mod);
k++;}
if(Q[t].n>Q[t].m) swap(Q[t].n,Q[t].m);
int n=Q[t].n,m=Q[t].m;ll ans=;
for(int j=,la;j<=n;j=la+){
la=min(n/(n/j),m/(m/j));
(ans+=1ll*(n/j)*(m/j)%mod*(query(la)-query(j-))%mod)%=mod;
}Q[t].ans=(1ll*ans%mod+mod)%mod;
}
sort(Q+,Q+T+,cmp3);
for(int t=;t<=T;t++)
printf("%lld\n",Q[t].ans);
return ;
}

BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. BZOJ 3529 [Sdoi2014]数表 ——莫比乌斯反演 树状数组

    $ans=\sum_{i=1}^n\sum_{j=1}^n\sigma(gcd(i,j))$ 枚举gcd为d的所有数得到 $ans=\sum_{d<=n}\sigma(d)*g(d)$ $g(d ...

  3. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  4. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  5. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  6. luogu3312 [SDOI2014]数表 (莫比乌斯反演+树状数组)

    link \(\sum_{i=1}^n\sum_{j=1}^m[s(\gcd(i,j))\le a]s(\gcd(i,j))\) \(=\sum_{p=1}^ns(p)[s(p)\le a]\sum_ ...

  7. bzoj 3529 数表 莫比乌斯反演+树状数组

    题目大意: 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  8. 【BZOJ3529】【莫比乌斯反演 + 树状数组】[Sdoi2014]数表

    Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为 能同时整除i和j的所有自然数之和.给定a,计算数表中不大于 ...

  9. BZOJ_3529_[Sdoi2014]数表_莫比乌斯反演+树状数组

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

随机推荐

  1. Codeforces Round #487 (Div. 2) C. A Mist of Florescence 构造

    题意: 让你构造一个 n∗mn*mn∗m 矩阵,这个矩阵由 444 种字符填充构成,给定 444 个整数,即矩阵中每种字符构成的联通块个数,n,mn,mn,m 需要你自己定,但是不能超过505050. ...

  2. node——简单的服务器启动+乱码问题解决,响应报文头

    这个是一个比较简单的代码 // 1.加载hrrp模块 var http=require('http'); // 2.创建一个http服务对象 var server=http.createServer( ...

  3. jq点击按钮打开和关闭弹出层,点击除了当前按钮以外的地方关闭弹出层

    1.html <a id="more" onclick="moreFun()">更多</a> <ul id="moreL ...

  4. 小程序全局状态管理,在页面中获取globalData和使用globalSetData

    GitHub: https://github.com/WozHuang/mp-extend 主要目标 微信小程序官方没有提供类似vuex.redux全局状态管理的解决方案,但是在一个完整的项目中各组件 ...

  5. Centos 6/7 忘记root密码处理方法

    1. centos 6.x 重置root密码 开机按esc  到下图 按 e 键进入编辑模式,通常选择第二项后按 e 键编辑此项 进入该编辑模式后,在quiet后面输入 simple 或者 1 然后回 ...

  6. 小白都能看懂的Linux系统下安装配置Zabbix

    实验环境: 操作系统:Centos 7.6 服务器ip:192.168.10.100 运行用户:root 网络环境:Internet Zabbix是一个基于web界面的提供分布式系统监控及网络功能的企 ...

  7. 实战:vue项目中导入swiper插件

    版本选择 swiper是个常用的插件,现在已经迭代到了第四代:swiper4.常用的版本是swiper3和swiper4,我选择的是swiper3. 安装 安装swiper3的最新版本3.4.2: n ...

  8. tp 在Nginx上各种404

    对于ThinkPHP的URL访问路劲如:http://域名/index.php/Index/BlogTest/read,原先的Nginx的是不支持的pathinfo路劲的,导致你在thinkPHP5上 ...

  9. poi操作excel2007(读取、生成、编辑)

    因为现在再写excel2003版的比较low,所以我在这就不介绍了,直接介绍2007,我所用的编程软件是IDEA poi操作office总共有6个jar包,在pom.xml文件中配置如下,也可下载后直 ...

  10. 中科燕园arcgis外包案例之12---供水供热管线GIS系统

    项目背景 绍兴县是浙江省第一个"数字城管"试点城市,也是全国第一个"数字城管"县级城市.随着经济的飞速发展.城市化步伐的加快,以及城市规模的扩大和现代化程度的不 ...