NOIP2012 同余方程 题解
描写叙述
求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解。
格式
输入格式
输入仅仅有一行,包括两个正整数a, b,用一个空格隔开。
输出格式
输出仅仅有一行,包括一个正整数x0。即最小正整数解。
输入数据保证一定有解。
限制
每一个測试点1s
提示
对于40%的数据,2 ≤b≤ 1,000;
对于60%的数据,2 ≤b≤ 50,000,000;
对于100%的数据,2 ≤a, b≤ 2,000,000,000。
分析:
解同余方程。比較水
欧几里德算法
program mod1;
var
a,b,x,y:longint;
procedure gcd(a,b:longint);
var t:longint;
begin
if b<>0
then gcd(b,a mod b)
else begin
x:=1;
y:=0;
exit;
end;
t:=x;
x:=y;
y:=t-(a div b)*y;
end;
begin
readln(a,b);
gcd(a,b);
//writeln(x,' ',y);
writeln(((x mod b)+b)mod b);
end.
代码二:
program mod2;
procedure oujilide(a,b:int64;var d,x,y:int64);
begin
if b=0 then
begin
d:=a;
x:=1;
y:=0;
end
else
begin
oujilide(b,a mod b,d,y,x);
y:=y-x*(a div b);end;
end;
var
a,b,d,x,y:int64;
begin
assign(input,'mod.in');
reset(input);
assign(output,'mod.out');
rewrite(output);
readln(a,b);
oujilide(a,b,d,x,y);
while x<0 do
x:=x+b;
writeln(x);
close(input);
close(output);
end.
NOIP2012 同余方程 题解的更多相关文章
- 一本通1632【 例 2】[NOIP2012]同余方程
1632:[ 例 2][NOIP2012]同余方程 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 求关于 x 的同余方程 ax≡1(mod b) 的最小正整 ...
- 1265. [NOIP2012] 同余方程
1265. [NOIP2012] 同余方程 ★☆ 输入文件:mod.in 输出文件:mod.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 求关于 x 的同余 ...
- 1632:【 例 2】[NOIP2012]同余方程
#include<bits/stdc++.h> #define ll long long using namespace std; void Exgcd(ll a,ll b,ll & ...
- [NOIP2012] 同余方程(第三次考试大整理)
1265. [NOIP2012] 同余方程 输入文件:mod.in 输出文件:mod.out 简单对比 时间限制:1 s 内存限制:128 MB [题目描述] 求关于 x 的同余方程 ax ...
- 【数学】【NOIp2012】同余方程 题解 以及 关于扩展欧几里得与同余方程
什么是GCD? GCD是最大公约数的简称(当然理解为我们伟大的党也未尝不可).在开头,我们先下几个定义: ①a|b表示a能整除b(a是b的约数) ②a mod b表示a-[a/b]b([a/b]在Pa ...
- luoguP1082 同余方程 题解(NOIP2012)(数论)
luoguP1082 同余方程 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include& ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...
- NOIP2012同余方程[exgcd]
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开 输出格式: 输出只有一行,包含一个正整 ...
- NOIP2012同余方程
描述 求关于 x的同余方程 ax ≡ 1(mod b) 的最小正整数解. 输入格式 输入文件 mod.in输入只有一行,包含两个正整数a,b,用一个空格隔开. 输出格式 输出文件 为 modmod ...
随机推荐
- luogu2261 [CQOI2007] 余数之和
题目大意 求 \[\sum_{i=1}^{n}(k\mod i)\] \(n,k\leq 10^9\). 题解 先只考虑\(n\leq k\)的情况. \[\sum_{i=1}^{n}(k\mod i ...
- 常用框架(一):spring+springMvc+mybatis+maven
项目说明: (1) 本例采用 maven web 工程做例子讲解 (2) 利用mybaits 提供的代码生成工具自动生成代码(dao接口,sql mapper映射文件,pojo数据库映射类) (3) ...
- 理解和配置 Linux 下的 OOM Killer【转】
本文转载自:http://www.vpsee.com/2013/10/how-to-configure-the-linux-oom-killer/ 最近有位 VPS 客户抱怨 MySQL 无缘无故挂掉 ...
- GObject调用父类函数
最近在分析Gstreamer的代码时,发现GstPipeline中有如下代码: result = GST_ELEMENT_CLASS (parent_class)->change_state ( ...
- js与jquery基础知识对比(一)---2017-05-06
用表格做的,想要对比的内容一目了然,红色部分为重点 js jquery 取元素 id: document.getElementById("aa"); 取到的是dom对象 cla ...
- vim下的autocmd
AUTOCMD *autocmd.txt* For Vim version 6.2. 最后修改: 2003年3月28日 VIM 参考手册 作者:Bram Moolenaar 翻译:Zimin<c ...
- lua迭代
迭代 function enum(array) local index = 1 return function() --返回迭代函数 local ret = array[index] index = ...
- hihoCoder挑战赛31
#1595 : Numbers 时间限制:8000ms 单点时限:1000ms 内存限制:256MB 描述 给定n个整数常数c[1], c[2], ..., c[n]和一个整数k.现在需要给2k个整数 ...
- mybatis 高级映射和spring整合之高级映射(4)
mybatis 高级映射和spring整合之高级映射 ----------------学习结构-------------------- 0.0 对订单商品数据模型进行分析 1.0 高级映射 1.1 一 ...
- spring cloud(一) 副 consul
spring cloud 使用consul作为注册中心 1.安装consul 使用docker安装 查找consul镜像 docker search consul 下载镜像 docker pull c ...