排列计数(bzoj 4517)
Description
Input
Output
输出 T 行,每行一个数,表示求出的序列数
Sample Input
1 0
1 1
5 2
100 50
10000 5000
Sample Output
1
20
578028887
60695423
/*
很容易就推出公式:ans=C(n,m)*dp[n-m]
dp[i]表示i的全错排方案数,dp[i]=(i-1)*(dp[i-1]+dp[i-2])
预处理出阶乘,阶乘的逆元和dp数组。
*/
#include<cstdio>
#include<iostream>
#define N 1000010
#define lon long long
#define mod 1000000007
#ifdef unix
#define LL "%lld"
#else
#define LL "%I64d"
#endif
using namespace std;
lon dp[N],inv[N],jc1[N],jc2[N],n,m;
void init(){
dp[]=;dp[]=;dp[]=;
for(int i=;i<N;i++)
dp[i]=(i-)*(dp[i-]+dp[i-])%mod;
inv[]=;
for(int i=;i<N;i++)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
jc1[]=;
for(int i=;i<N;i++)
jc1[i]=jc1[i-]*i%mod;
jc2[]=;
for(int i=;i<N;i++)
jc2[i]=jc2[i-]*inv[i]%mod;
}
int main(){
init();
int T;scanf("%d",&T);
while(T--){
scanf(LL LL,&n,&m);
lon ans=jc1[n]*jc2[m]%mod*jc2[n-m]%mod*dp[n-m]%mod;
printf(LL,ans);printf("\n");
}
return ;
}
排列计数(bzoj 4517)的更多相关文章
- BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 911 Solved: 566[Submit][Status ...
- 数学(错排):BZOJ 4517: [Sdoi2016]排列计数
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 693 Solved: 434[Submit][Status ...
- BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]
4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排公式
4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...
- BZOJ 4517: [Sdoi2016]排列计数 错排+逆元
4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...
- Bzoj 4517: [Sdoi2016]排列计数(排列组合)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...
- bzoj-4517 4517: [Sdoi2016]排列计数(组合数学)
题目链接: 4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 846 Solved: 530[Submit][ ...
- BZOJ 4517--[Sdoi2016]排列计数(乘法逆元)
4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MBSubmit: 1727 Solved: 1067 Description ...
- bzoj 2111: [ZJOI2010]Perm 排列计数 (dp+卢卡斯定理)
bzoj 2111: [ZJOI2010]Perm 排列计数 1 ≤ N ≤ 10^6, P≤ 10^9 题意:求1~N的排列有多少种小根堆 1: #include<cstdio> 2: ...
- BZOJ 2111: [ZJOI2010]Perm 排列计数 [Lucas定理]
2111: [ZJOI2010]Perm 排列计数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 1936 Solved: 477[Submit][ ...
随机推荐
- alibaba druid监控页面的使用配置
一.Maven中添加Durid连接池依赖 <!-- druid连接池 --> <dependency> <groupId>com.alibaba</group ...
- Spring学习笔记之Spring概述
概述 Spring是一个java应用最广的开源框架,它是于2003 年兴起的一个轻量级的Java 开发框架,由Rod Johnson 在其著作Expert One-On-One J2EE Deve ...
- cesium 基于天地图服务 完成底图标注渲染加切换
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- 三倍经验——bzoj3663、4660、4206 Crazy Rabbit/最大团
题目描述: 3663 4660 4206 题解: 第一眼:不成立的互相连边,然后用网络流求解无向图最小点覆盖! 好吧我不会. 正解: 每个点对应圆上的一段圆弧,长这样: 设对应圆弧$(l,r)$. 若 ...
- k8s的Pod控制器
pod的配置清单常见选项: apiVersion,kind,metadata,spec,status(只读) spec: containers: nodeSelector: nodeName: res ...
- 【Windows7注册码】
[文章转载自 http://www.win7zhijia.cn/jiaocheng/win7_19324.html] 一.神Key: KH2J9-PC326-T44D4-39H6V-TVPBY TFP ...
- Python爬虫二
常见的反爬手段和解决思路 1)明确反反爬的主要思路 反反爬的主要思路就是尽可能的去模拟浏览器,浏览器在如何操作,代码中就如何去实现;浏览器先请求了地址url1,保留了cookie在本地,之后请求地址u ...
- pandas-Notes2
#coding = utf-8 import pandas as pd import numpy as np import matplotlib as plt dates = pd.date_rang ...
- Leetcode(204) Count Primes
题目 Description: Count the number of prime numbers less than a non-negative number, n. Credits: Speci ...
- city Engine 建模
基本操作介绍 界面布局,文件组织 五个常见图层 常见规则,替换思想