题目描述

根据一些书上的记载,上帝的一次失败的创世经历是这样的:
第一天, 上帝创造了一个世界的基本元素,称做“元”。
第二天, 上帝创造了一个新的元素,称作“α”。“α”被定义为“元”构成的集合。容易发现,一共有两种不同的“α”。
第三天, 上帝又创造了一个新的元素,称作“β”。“β”被定义为“α”构成的集合。容易发现,一共有四种不同的“β”。
第四天, 上帝创造了新的元素“γ”,“γ”被定义为“β”的集合。显然,一共会有16种不同的“γ”。
如果按照这样下去,上帝创造的第四种元素将会有65536种,第五种元素将会有2^65536种。这将会是一个天文数字。
然而,上帝并没有预料到元素种类数的增长是如此的迅速。他想要让世界的元素丰富起来,因此,日复一日,年复一年,他重复地创造着新的元素……
然而不久,当上帝创造出最后一种元素“θ”时,他发现这世界的元素实在是太多了,以致于世界的容量不足,无法承受。因此在这一天,上帝毁灭了世界。
至今,上帝仍记得那次失败的创世经历,现在他想问问你,他最后一次创造的元素“θ”一共有多少种?
上帝觉得这个数字可能过于巨大而无法表示出来,因此你只需要回答这个数对p取模后的值即可。
你可以认为上帝从“α”到“θ”一共创造了10^9次元素,或10^18次,或者干脆∞次。
一句话题意:

输入

接下来T行,每行一个正整数p,代表你需要取模的值

输出

T行,每行一个正整数,为答案对p取模后的值

样例输入

3
2
3
6

样例输出

0
1
4


题解

扩展欧拉定理

内容:

证明参考 https://zhuanlan.zhihu.com/p/24902174

这个定理不要求a和p互质,可以直接使用。

回到题目中,设a=2,n=2^2^...,由于有无穷个2,,所以有a^n mod p = a^(a^n mod phi(p) + phi(p)) mod p。

可以发现a^n mod p和a^n mod phi(p)是一样的,所以我们可以递归求解。

边界条件:当a^n mod p为定值时结束。我们可以知道当p=1时这个式子必然等于0,可以结束。

而且这样的方法时间复杂度是O(logp)的,参考 http://blog.csdn.net/popoqqq/article/details/43951401

这样加上快速幂就能求解了。

#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long ll;
ll pow(ll y , ll p)
{
ll x = 2 , ans = 1;
while(y)
{
if(y & 1) ans = ans * x % p;
x = x * x % p , y >>= 1;
}
return ans;
}
ll phi(ll x)
{
ll i , ans = x;
for(i = 2 ; i * i <= x ; i ++ )
{
if(x % i == 0)
{
ans = ans / i * (i - 1);
while(x % i == 0) x /= i;
}
}
if(x != 1) ans = ans / x * (x - 1);
return ans;
}
ll cal(ll p)
{
if(p == 1) return 0;
ll t = phi(p);
return pow(cal(t) + t , p);
}
int main()
{
int T;
ll p;
scanf("%d" , &T);
while(T -- ) scanf("%lld" , &p) , printf("%lld\n" , cal(p));
return 0;
}

【bzoj3884】上帝与集合的正确用法 扩展欧拉定理的更多相关文章

  1. bzoj3884: 上帝与集合的正确用法 扩展欧拉定理

    题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...

  2. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  3. BZOJ3884题解上帝与集合的正确用法--扩展欧拉定理

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3884 分析 扩展欧拉定理裸题 欧拉定理及证明: 如果\((a,m)=1\),则\(a^{ ...

  4. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  5. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

  6. BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  7. BZOJ3884 上帝与集合的正确用法 【欧拉定理】

    题目 对于100%的数据,T<=1000,p<=10^7 题解 来捉这道神题 欧拉定理的一般形式: \[a^{m} \equiv a^{m \mod \varphi(p) + [m \ge ...

  8. 【BZOJ3884】上帝与集合的正确用法(欧拉定理,数论)

    [BZOJ3884]上帝与集合的正确用法(欧拉定理,数论) 题面 BZOJ 题解 我们有欧拉定理: 当\(b \perp p\)时 \[a^b≡a^{b\%\varphi(p)}\pmod p \] ...

  9. BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)

    Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 3860  Solved: 1751[Submit][Status][Discuss] Descripti ...

随机推荐

  1. 【洛谷4287】[SHOI2011] 双倍回文(Manacher算法经典题)

    点此看题面 大致题意: 求一个字符串中有多少个长度为偶数的回文串,它的一半也是回文串. \(Manacher\)算法 这应该是\(Manacher\)算法一道比较好的入门题,强烈建议在做这题之前先去学 ...

  2. 123apps-免费网络应用

    前言 在Jianrry`s博客看见推荐这个网址,试用了一下感觉还不错.主要是完全免费!!就当备用吧 网站介绍 123apps 网站地址:https://123apps.com/cn/ 旗下网站: PD ...

  3. Struts2 In Action笔记_页面到动作的数据流入和流出

    因为回答百度知道的一个问题,仔细查看了<Struts2 In Action>,深入细致的看了 “数据转移OGNL 和 构建视图-标签”,很多东西才恍然大悟. 一直觉得国外写的书很浮,不具有 ...

  4. DOTA自走棋卡牌及搭配阵容

    这个游戏其实就根炉石jjc和A牌轮抽一样,前期要找着质量牌抓,保证你至少不漏.根据你的需求补一些你不会上场的阵容组件,最后根据你的组件和核心紫卡来哪张来决定打什么.另外也要考虑场上另外几家,如果有一家 ...

  5. ES6学习(一):数值的扩展

    chapter06 数值的扩展 6.1 二进制和八进制 二进制 前缀 0b 或者 0B 八进制 前缀 0o 或者 0O 6.2 Number.isFinite() Number.isNaN() 原先这 ...

  6. 实用小工具不定期合集(textarea 高度自适应、自动计算Y轴刻度、json转table)

    1.textarea高度自适应 这个非常有用,但是网上的解决方案都不尽人意,话不多说,上代码. function auto (elem) { var minHeight = 30 var change ...

  7. 2.3.3 zerosum 和为零

    #include<bits/stdc++.h> using namespace std; ],a; ]={' ','+','-'}; void out() { ;i<a;i++) c ...

  8. jsp 生成验证码代码

    调用方法:在jsp页面用图像标签便可以直接调用如下是标签代码<img border=0 src="image.jsp">,只需要把该代码发在验证码要显示的区域就可以了) ...

  9. shell脚本:变量,文件判断,逻辑运算等纪要

    shell脚本中的变量定义,引用各有不同的方式,除此之外,很常用的有文件属性判断,逻辑运算,数值运算等,下面记录一下它们的属性作用 变量 shell变量的定义分为两种:一种是直接赋值定义,另一种是嵌套 ...

  10. git Bash 学习

    ,ranh新建一个本地仓库并与github连接的方法 注:该终端也具有按tab键补全功能,应该合理应用 1. 新建一个文件夹,并将git bash的位置转到相应文件夹下(cd 命令转移) 2.git ...