CSU-2116 Polyline Simplification
CSU-2116 Polyline Simplification
Description
Mapping applications often represent the boundaries of countries, cities, etc. as polylines, which are connected sequences of line segments. Since fine details have to be shown when the user zooms into the map, these polylines often contain a very large number of segments. When the user zooms out, however, these fine details are not important and it is wasteful to process and draw the polylines with so many segments. In this problem, we consider a particular polyline simplification algorithm designed to approximate the original polyline with a polyline with fewer segments.
A polyline with n segments is described by n + 1 points \(p_0=(x_0,y_0),...,p_n=(x_n,y_n)\), with the ith line segment being pi−1pi. The polyline can be simplified by removing an interior point \(p_i\)(1≤i≤n−1), so that the line segments $p_{i−1} p_i $and \(p_ip_{i+1}\) are replaced by the line segment \(p_{i − 1}p_{i + 1}\). To select the point to be removed, we examine the area of the triangle formed by \(p_{i−1},p_i\),and $ p_{i+1}$(the area is 0 if the three points are colinear), and choose the point pi such that the area of the triangle is smallest. Ties are broken by choosing the point with the lowest index. This can be applied again to the resulting polyline, until the desired number m of line segments is reached.
Consider the example below.
The original polyline is shown at the top. The area of the triangle formed by p2,p3,and p4 is considered (middle), and p3 is removed if the area is the smallest among all such triangles. The resulting polyline after p3 is removed is shown at the bottom.
Input
The first line of input contains two integers n(2≤n≤200000) and m(1≤m<n)m(1≤m<n). The next n + 1 lines specify p0,...,pn. Each point is given by its x and y coordinates which are integers between −5000 and 5000 inclusive. You may assume that the given points are strictly increasing in lexicographical order. That is, \(xi<x_{i+1}\) , or \(xi=x_{i+1}\) and \(yi<y_{i+1}\) for all 0≤i<n .
Output
Print on the kth line the index of the point removed in the kth step of the algorithm described above (use the index in the original polyline).
Sample Input
10 7
0 0
1 10
2 20
25 17
32 19
33 5
40 10
50 13
65 27
75 22
85 17
Sample Output
1
9
6
题解
题意:给定n+1个点,每个点可以与它左右两个点形成一个三角形,每次删去最小的那个三角形的中间那个点,直到剩下m+1个点,求被删除点的编号。
这是一道模拟题,需要用到叉积(向量积)计算三角形面积
\]
带入三点坐标化简一下即可,由于题目中所给坐标均为整数,所以我们可以存不除2的结果,这样都为整数可以用int存。我们用set维护一下最小三角形的面积,该三角形中间点是第几个点。用数组模拟一下双向链表维护一下这个点左右各是哪个点,删除这个点时更新一下就好了,记得如果该三角形不是第一个或者最后一个三角形的话还要分别更新一下新形成的三角形的面积。
#include<bits/stdc++.h>
#define maxn 200050
using namespace std;
struct point {
int x, y;
} a[maxn];
int l[maxn], r[maxn];
int area[maxn];
struct node {
int val, id;
node(int val = 0, int id = 0): val(val), id(id) {}
bool operator < (const node &a) const {
if (val == a.val) return id < a.id;
else return val < a.val;
}
};
int calc1(int x) {
int p1 = l[x], p2 = x, p3 = r[x];
return abs(a[p1].x * a[p2].y + a[p2].x * a[p3].y + a[p3].x * a[p1].y - a[p1].x * a[p3].y - a[p2].x * a[p1].y - a[p3].x * a[p2].y);
}
set<node> s;
int main() {
int n, m;
scanf("%d%d", &n, &m);
int k = n - m;
for (int i = 0; i <= n; i++) {
scanf("%d%d", &a[i].x, &a[i].y);
}
r[0] = 1;
l[n] = n - 1;
for (int i = 1; i < n; i++) {
l[i] = i - 1; r[i] = i + 1;
area[i] = calc1(i);
s.insert(node(area[i], i));
}
for (int i = 1; i <= k; i++) {
set<node>::iterator it = s.begin();
int now = (*it).id;
printf("%d\n", now);
s.erase(it);
l[r[now]] = l[now];
r[l[now]] = r[now];
if (l[now] > 0) {
it = s.find(node(area[l[now]], l[now]));
s.erase(it);
area[l[now]] = calc1(l[now]);
s.insert(node(area[l[now]], l[now]));
}
if (r[now] < n) {
it = s.find(node(area[r[now]], r[now]));
s.erase(it);
area[r[now]] = calc1(r[now]);
s.insert(node(area[r[now]], r[now]));
}
}
return 0;
}
/**********************************************************************
Problem: 2116
User: Artoriax
Language: C++
Result: AC
Time:392 ms
Memory:15308 kb
**********************************************************************/
CSU-2116 Polyline Simplification的更多相关文章
- 中南大学2019年ACM寒假集训前期训练题集(基础题)
先写一部分,持续到更新完. A: 寒衣调 Description 男从戎,女守家.一夜,狼烟四起,男战死沙场.从此一道黄泉,两地离别.最后,女终于在等待中老去逝去.逝去的最后是换尽一生等到的相逢和团圆 ...
- ArcEngine开发各种几何错误代码
E_GEOMETRY_AMBIGUOUSPARTTYPE - Static variable in interface com.esri.arcgis.geometry.esriGeometryErr ...
- psimpl_v7_win32_demo
psimpl - generic n-dimensional polyline simplification 通用N维折线简化程序 Author - Elmar de Koning 作者 - Elma ...
- [svg 翻译教程]Polyline(折线)polygon(多边形)
原文: http://tutorials.jenkov.com/svg/polygon-element.html Polyline 虽然说这个 元素我没用过,但是还是蛮强大的,也翻译下 示例 < ...
- [javascript svg fill stroke stroke-width points polygon属性讲解] svg fill stroke stroke-width points polygon绘制多边形属性并且演示polyline和polygon区别讲解
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- [javascript svg fill stroke stroke-width points polyline 属性讲解] svg fill stroke stroke-width points polyline 绘制折线属性讲解
<!DOCTYPE html> <html lang='zh-cn'> <head> <title>Insert you title</title ...
- csu 1812: 三角形和矩形 凸包
传送门:csu 1812: 三角形和矩形 思路:首先,求出三角形的在矩形区域的顶点,矩形在三角形区域的顶点.然后求出所有的交点.这些点构成一个凸包,求凸包面积就OK了. /************** ...
- CSU 1503 点到圆弧的距离(2014湖南省程序设计竞赛A题)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1503 解题报告:分两种情况就可以了,第一种是那个点跟圆心的连线在那段扇形的圆弧范围内,这 ...
- CSU 1120 病毒(DP)
题目链接:http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1120 解题报告:dp,用一个串去更新另一个串,递推方程是: if(b[i] > a ...
随机推荐
- 判断一个点是否在多边形区域内--C算法
/*函数的输入:(1)当前点的坐标p(2)区域顶点数组pt[]:(3)顶点数nCount 输出: 在区域内返回TRUE,否则返回FALSE. Point类型是一个结构: struct Point { ...
- 更改placeholder样式
/*不要将选择器进行组合*/ /* IE 10-11 */ :-ms-input-placeholder { color: #aaa; } /* webkit */ ::-webkit-input-p ...
- LeetCode Search Insert Position (二分查找)
题意: 给一个升序的数组,如果target在里面存在了,返回其下标,若不存在,返回其插入后的下标. 思路: 来一个简单的二分查找就行了,注意边界. class Solution { public: i ...
- html5标准
1.<!DOCTYPE html> html5标准网页声明,原先的是一串很长的字符串,现在是这个简洁形式,支持html5标准的主流浏览器都认识这个声明.表示网页采用html5 浅谈:htm ...
- js 中//<![CDATA[ 意义
CDATA内部所有东西都会被解析器忽略,加入文本中包含了大量< 和 $符号,就像编程中经常出现的情况一样,那么这个元素就可以被定义为一个CDATA部分 ,CDATA 区段开始于 "&l ...
- 模块化Java简介
什么是模块化? 模块化是个一般概念,这一概念也适用于软件开发,可以让软件按模块单独开发,各模块通常都用一个标准化的接口来进行通信.实际上,除了规模大小有区别外,面向对象语言中对象之间的关注点分离与 ...
- python剑指offer剪绳子
题目 给你一根长度为n的绳子,请把绳子剪成m段 (m和n都是整数,n>1并且m>1)每段绳子的长度记为k[0],k[1],…,k[m].请问k[0]k[1]…*k[m]可能的最大乘积是多少 ...
- ETL工具--DataX3.0实战
DataX是一个在异构的数据库/文件系统之间高速交换数据的工具,实现了在任意的数据处理系统(RDBMS/Hdfs/Local filesystem)之间的数据交换,由淘宝数据平台部门完成. DataX ...
- 黑马基础阶段测试题:通过字符输入流读取info.txt中的所有内容,每次读取一行,将每一行的第一个文字截取出来并打印在控制台上。
package com.swift; import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File ...
- .NET中变量生存期
Web窗体后台 cs 文件中,创建类作用域的变量,在关闭页面的时候并不会消失,当 IIS 站点被关闭的时候,才会调用这个变量的析构函数 但是好像也不肯定在关闭站点才会析构,应该是外层对象析构的时候才会 ...