题目链接:https://vjudge.net/problem/POJ-1061

青蛙的约会
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 122217   Accepted: 25907

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

Source

题意:

一个圆圈长L,A站在x处,B站在y处,两人向同一方向跳,A每步跳的距离为m,B为n,且A、B跳一步的时间相同。问:至少要条多少步,使得他们某一时刻跳到同一个位置?或者不可能?

题解:

1.当跳了a步时(a为正时向右跳,a为负时向左跳),A所在位置为:(a*m + x )%L,B所在位置为:(a*n + y)%L  如果此时两者在同一位置,则:(a*m + x )%L = (a*n + y)%L,即: a*m + x + b*L = a*n + y,移项得:a*(m-n) + b*L = y - x。

2.可知上述式子为二元一次方程,于是可以用扩展欧几里得算法进行求解。

3.注意,欧几里得算法需要满足 a*x + b*y = c, 其中 a>0 且 b>0。所以上述式子a*(m-n) + b*L = y - x,如果m-n小于0,则不满足条件了,需要交换位置,即:

a*n + y + b*L = a*m + x,得:a*(n-m) + b*L = x - y。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int mod = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 5e5+; LL exgcd(LL a, LL b, LL &x, LL &y)
{
if(a== &&b==) return -;
if(b==) {x=; y=; return a;}
LL d = exgcd(b,a%b,y,x);
y -= a/b*x;
return d;
} int main()
{
LL x, y, n, m, L;
while(scanf("%lld%lld%lld%lld%lld", &x,&y,&m,&n,&L)!=EOF)
{
if(m<n) swap(m,n), swap(x,y);
LL A = m-n, B = L, C = y-x;
LL X, Y;
LL d = exgcd(A, B, X, Y); if(C%d)
{
printf("Impossible\n");
continue;
} X *= C/d;
X = (X%(B/d)+(B/d))%(B/d);
printf("%lld\n", X);
}
}

POJ1061 青蛙的约会 —— 扩展gcd的更多相关文章

  1. poj1061 青蛙的约会 扩展欧几里德的应用

    这个题解得改一下,开始接触数论,这道题目一开始是看了别人的思路做的,后来我又继续以这种方法去做题,发现很困难,学长告诉我先看书,把各种词的定义看懂了,再好好学习,我做了几道朴素的欧几里德,尽管是小学生 ...

  2. POJ1061——青蛙的约会(扩展欧几里德)

    青蛙的约会 Description两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件 ...

  3. 解题报告:poj1061 青蛙的约会 - 扩展欧几里得算法

    青蛙的约会 writer:pprp Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 119716 Accepted: 25238 ...

  4. POJ-1061青蛙的约会,扩展欧几里德求逆元!

                                                               青蛙的约会 以前不止一次看过这个题,但都没有去补..好吧,现在慢慢来做. 友情提示 ...

  5. POJ1061青蛙的约会[扩展欧几里得]

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Descript ...

  6. UESTC 288 青蛙的约会 扩展GCD

    设两只青蛙跳了t步,则此时A的坐标:x+mt,B的坐标:y+nt.要使的他们在同一点,则要满足: x+mt - (y+nt) = kL (p是整数) 化成: (n-m)t + kL = x-y (L ...

  7. poj 1061 青蛙的约会(扩展gcd)

    题目链接 题意:两只青蛙从数轴正方向跑,给出各自所在位置, 和数轴长度,和各自一次跳跃的步数,问最少多少步能相遇. 分析:(x+m*t) - (y+n*t) = p * L;(t是跳的次数,L是a青蛙 ...

  8. POJ1061青蛙的约会(扩展欧几里德算法)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 102239   Accepted: 19781 Descript ...

  9. POJ 1061 青蛙的约会(扩展GCD求模线性方程)

    题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...

随机推荐

  1. WEB接口测试之Jmeter接口测试自动化 (三)(数据驱动测试)

     接口测试与数据驱动 1简介 数据驱动测试,即是分离测试逻辑与测试数据,通过如excel表格的形式来保存测试数据,用测试脚本读取并执行测试的过程. 2 数据驱动与jmeter接口测试 我们已经简单介绍 ...

  2. [Python Cookbook] Numpy: How to Apply a Function to 1D Slices along the Given Axis

    Here is a function in Numpy module which could apply a function to 1D slices along the Given Axis. I ...

  3. 非常easy的JAVA反射教程

    原创文章,转载请注明. 反射能够动态载入类,实例化对象,调用方法.如今以下面样例解说. 一.载入类. Class clazz = Class.forName("java.lang.Strin ...

  4. Servlet 3.0的AsyncListener接口

    Servlet 3.0的AsyncListener接口 作者:chszs,转载需注明. 博客主页:http://blog.csdn.net/chszs 一.Servlet 3.0介绍 Servlet ...

  5. 使用 rman duplicate from active database 搭建dataguard 手记--系列二

    run { allocate channel prmy1 type disk; allocate channel prmy2 type disk; allocate channel prmy3 typ ...

  6. PHP ORM操作MySQL数据库

    ORM----Oriented Relationship Mapper,即用面向对象的方式来操作数据库.归根结底,还是对于SQL语句的封装. 首先,我们的数据库有如下一张表: 我们希望能够对这张表,利 ...

  7. Python 模块之 ConfigParser: 用 Python 解析配置文件

    在程序中使用配置文件来灵活的配置一些参数是一件很常见的事情,配置文件的解析并不复杂,在 Python 里更是如此,在官方发布的库中就包含有做这件事情的库,那就是 ConfigParser,这里简单的做 ...

  8. muduo::Connector、TcpClient分析

    Connector TcpClient Connector Connector用来发起连接. 在非堵塞网络中,主动发起连接比被动接收连接更为复杂,由于要考虑错误处理,还要考虑重试. 主要难点在于 1. ...

  9. bitmap进行个数统计

    昨天看了编程珠玑第一章的内容, 发现bitmap对于统计某一个范围内的整数个数效率很高, 就自己实现了一下: 这是原始的bitmap, 用于统计0~maxSize是否出现, 也可以用于排序 publi ...

  10. CASIO fx-991es Plus科学计算器使用技巧

    关于输出: 默认是按照自然书写格式显示的,计算结果是按照分数形式显示,如0.5x0.5,会显示=1/4.虽然很直观,但是在测量和估算上略有不便.此时用 SHIFT --> MODE (也就是se ...