有一点小转化的题,在设计dp状态时还是有点费脑筋的。

地址


依题意,首先可以知道肯定要扩展域的并查集(明摆着的嘛)。一个"好人"域,一个"坏人"域,每句话分两种情况考虑连边。假设是yes,同域连边,否则异域连边(经典模型嘛)。然后就是要考虑如何验证是否有$x$个好人$y$个坏人的唯一解存在。这取决于联通块。

可以参考我瞎画的图,上面点1~N,下面点N+1~2N。

由于并查集合并时操作的对称性,可以发现一个联通块要么$x$个好人$y$个坏人要么$y$个好人$x$个坏人。那么对于所有联通块必须选其中一种方案,最后要凑齐。于是我就想到二维的背包。。但是复杂度太大了啊。。卡了好久,于是又手玩了样例。发现当我所有联通块恰好凑出x个好人时,剩下的不就全是坏人吗。所以只要去做一个好人的背包就行了。dp的时候由于没处理好关于多解的问题,又调了半小时。。一题做两个小时我也是醉了。。其实就是有前面一个状态转移,记一下$pre$。在记一下方案。最终好人的背包装满的状态方案不是1种就是无解,是一种就把所有好人找出来,这个我开了vector存了每个联通块。细节还看code,虽然可能写繁掉了qwq。。

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<queue>
#include<vector>
#define dbg(x) cerr<<#x<<" = "<<x<<endl
#define ddbg(x,y) cerr<<#x<<" = "<<x<<" "<<#y<<" = "<<y<<endl
using namespace std;
typedef long long ll;
template<typename T>inline char MIN(T&A,T B){return A>B?A=B,:;}
template<typename T>inline char MAX(T&A,T B){return A<B?A=B,:;}
template<typename T>inline T _min(T A,T B){return A<B?A:B;}
template<typename T>inline T _max(T A,T B){return A>B?A:B;}
template<typename T>inline T read(T&x){
x=;int f=;char c;while(!isdigit(c=getchar()))if(c=='-')f=;
while(isdigit(c))x=x*+(c&),c=getchar();return f?x=-x:x;
}
const int N=+;
int fa[N<<],f[N][N>>],cnt[N][N>>],pos[N],tot,tot2,ans[N];
vector<int> a[N],b[N];
int n,m,gd,bd,x,y;
inline int Get(int x){return fa[x]^x?fa[x]=Get(fa[x]):x;} int main(){//freopen("test.in","r",stdin);//freopen("test.out","w",stdout);
while(read(m),read(gd),read(bd),m||gd||bd){
n=gd+bd;char s[];tot=,tot2=;memset(pos,,sizeof pos);
for(register int i=;i<=n;++i)a[i].clear(),b[i].clear();
for(register int i=;i<=(n<<);++i)fa[i]=i;
for(register int i=;i<=m;++i){
read(x),read(y),scanf("%s",s);
if(x==y)continue;
if(s[]=='y')fa[Get(x)]=Get(y),fa[Get(x+n)]=Get(y+n);
else fa[Get(x)]=Get(y+n),fa[Get(x+n)]=Get(y);
}
for(register int i=;i<=n;++i)if(Get(i)<=n)a[Get(i)].push_back(i);
for(register int i=n+;i<=(n<<);++i)if(Get(i)<=n)b[Get(i)].push_back(i-n);
for(register int i=;i<=n;++i)if(!a[i].empty()||!b[i].empty())pos[++tot]=i;//联通块统计
memset(f,,sizeof f);memset(cnt,,sizeof cnt);cnt[][]=;
for(register int i=;i<=tot;++i){
x=a[pos[i]].size(),y=b[pos[i]].size();
for(register int j=,lx=j-x,ly=j-y;j<=gd;++j,lx=j-x,ly=j-y){
if(lx<&&ly>=)f[i][j]=ly,cnt[i][j]=cnt[i-][ly];
else if(lx>=&&ly<)f[i][j]=lx,cnt[i][j]=cnt[i-][lx];
else if(lx>=&&ly>=)f[i][j]=cnt[i-][lx]?lx:ly,cnt[i][j]=cnt[i-][lx]+cnt[i-][ly];
}
}//做dp
if(cnt[tot][gd]^)printf("no\n");
else{
int j=gd;
while(tot){
if(j-f[tot][j]==a[pos[tot]].size()){for(register int i=;i<a[pos[tot]].size();++i)ans[++tot2]=a[pos[tot]][i];}
else for(register int i=;i<b[pos[tot]].size();++i)ans[++tot2]=b[pos[tot]][i];
j=f[tot--][j];
}//推回去
sort(ans+,ans+tot2+);
for(register int i=;i<=tot2;++i)printf("%d\n",ans[i]);
printf("end\n");
}
}
return ;
}

poj1417 True Liars[并查集+背包]的更多相关文章

  1. POJ1417 True Liars 并查集 动态规划 (种类并查集)

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ1417 题意概括 有一群人,p1个好人,p2个坏人. 他们说了n句话.(p1+p2<=600,n ...

  2. POJ1417 True Liars —— 并查集 + DP

    题目链接:http://poj.org/problem?id=1417 True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  3. poj1417 带权并查集 + 背包 + 记录路径

    True Liars Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2713   Accepted: 868 Descrip ...

  4. poj1417(带权并查集+背包DP+路径回溯)

    题目链接:http://poj.org/problem;jsessionid=8C1721AF1C7E94E125535692CDB6216C?id=1417 题意:有p1个天使,p2个恶魔,天使只说 ...

  5. POJ1417:True Liars(DP+带权并查集)

    True Liars Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  6. poj1417 true liars(并查集 + DP)详解

    这个题做了两天了.首先用并查集分类是明白的, 不过判断是否情况唯一刚开始用的是搜索.总是超时. 后来看别人的结题报告, 才恍然大悟判断唯一得用DP. 题目大意: 一共有p1+p2个人,分成两组,一组p ...

  7. poj1417 带权并查集+0/1背包

    题意:有一个岛上住着一些神和魔,并且已知神和魔的数量,现在已知神总是说真话,魔总是说假话,有 n 个询问,问某个神或魔(身份未知),问题是问某个是神还是魔,根据他们的回答,问是否能够确定哪些是神哪些是 ...

  8. POJ1417 True Liars

    题意 Language:Default True Liars Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 6392 Accep ...

  9. POJ - 1417 并查集+背包

    思路:很简单的种类并查集,利用并查集可以将所有的人分成几个集合,每个集合又分为好人和坏人集合,直接进行背包dp判断有多少种方法可以在取了所有集合并且人数正好凑足p1个好人的方案.dp(i, j)表示前 ...

随机推荐

  1. HTML5 2D平台游戏开发#4状态机

    在实现了<HTML5 2D平台游戏开发——角色动作篇之冲刺>之后,我发现随着角色动作的增加,代码中的逻辑判断越来越多,铺天盖地的if() else()语句实在让我捉襟见肘: 这还仅仅是角色 ...

  2. 九度OJ 1014:排名 (排序)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:8267 解决:2469 题目描述:     今天的上机考试虽然有实时的Ranklist,但上面的排名只是根据完成的题数排序,没有考虑每题的分 ...

  3. virtual dynamic shared object

    vdso(7) - Linux manual page http://man7.org/linux/man-pages/man7/vdso.7.html NAME | SYNOPSIS | DESCR ...

  4. The connection between feature spaces and smoothness is not obvious, and is one of the things we’ll discuss in the course.

    http://www.gatsby.ucl.ac.uk/~gretton/coursefiles/lecture4_introToRKHS.pdf

  5. css多余字符显示省略号

    width:300px; white-space:nowrap; overflow:hidden; text-overflow:ellipsis; ;

  6. 我的Android进阶之旅------>Android使用AlarmManager全局定时器实现定时更换壁纸

    该DEMO将会通过AlarmManager来周期的调用ChangeService,从而让系统实现定时更换壁纸的功能. 更换壁纸的API为android.app.WallpaperManager,它提供 ...

  7. 我的Java开发学习之旅------>Java使用Fork/Join框架来并行执行任务

    现代的计算机已经向多CPU方向发展,即使是普通的PC,甚至现在的智能手机.多核处理器已被广泛应用.在未来,处理器的核心数将会发展的越来越多. 虽然硬件上的多核CPU已经十分成熟,但是很多应用程序并未这 ...

  8. 我的Java开发学习之旅------>工具类:Java使用正则表达式分离出字符串中的中文和英文

    今天看到一个工具类使用正则表达式将一大段字符串中的中文和英文都分离出来了,在此记录一下,读者可以收藏! import java.util.ArrayList; import java.util.Col ...

  9. JAVA Exception处理

    原文地址:http://blog.csdn.net/hguisu/article/details/6155636 1. 引子 try…catch…finally恐怕是大家再熟悉不过的语句了,而且感觉用 ...

  10. Spring Boot 支持多种外部配置方式

    Spring Boot 支持多种外部配置方式 http://blog.csdn.net/isea533/article/details/50281151 这些方式优先级如下: 命令行参数 来自java ...