刷题总结——Genghis Khan the Conqueror (hdu4126)
题目:
Our story is about Jebei Noyan(哲别), who was one of the most famous generals in Genghis Khan’s cavalry. Once his led the advance troop to invade a country named Pushtuar. The knights rolled up all the cities in Pushtuar rapidly. As Jebei Noyan’s advance troop did not have enough soldiers, the conquest was temporary and vulnerable and he was waiting for the Genghis Khan’s reinforce. At the meantime, Jebei Noyan needed to set up many guarders on the road of the country in order to guarantee that his troop in each city can send and receive messages safely and promptly through those roads.
There were N cities in Pushtuar and there were bidirectional roads connecting cities. If Jebei set up guarders on a road, it was totally safe to deliver messages between the two cities connected by the road. However setting up guarders on different road took different cost based on the distance, road condition and the residual armed power nearby. Jebei had known the cost of setting up guarders on each road. He wanted to guarantee that each two cities can safely deliver messages either directly or indirectly and the total cost was minimal.
Things will always get a little bit harder. As a sophisticated general, Jebei predicted that there would be one uprising happening in the country sooner or later which might increase the cost (setting up guarders) on exactly ONE road. Nevertheless he did not know which road would be affected, but only got the information of some suspicious road cost changes. We assumed that the probability of each suspicious case was the same. Since that after the uprising happened, the plan of guarder setting should be rearranged to achieve the minimal cost, Jebei Noyan wanted to know the new expected minimal total cost immediately based on current information.
Input
There are no more than 20 test cases in the input.
For each test case, the first line contains two integers N and M (1<=N<=3000, 0<=M<=N×N), demonstrating the number of cities and roads in Pushtuar. Cities are numbered from 0 to N-1. In the each of the following M lines, there are three integers x i, y i and c i(c i<=10 7), showing that there is a bidirectional road between x i and y i, while the cost of setting up guarders on this road is c i. We guarantee that the graph is connected. The total cost of the graph is less or equal to 10 9.
The next line contains an integer Q (1<=Q<=10000) representing the number of suspicious road cost changes. In the following Q lines, each line contains three integers X i, Y i and C i showing that the cost of road (X i, Y i) may change to C i(C i<=10 7). We guarantee that the road always exists and C i is larger than the original cost (we guarantee that there is at most one road connecting two cities directly). Please note that the probability of each suspicious road cost change is the same.
Output
For each test case, output a real number demonstrating the expected minimal total cost. The result should be rounded to 4 digits after decimal point.
Sample Input
3 3
0 1 3
0 2 2
1 2 5
3
0 2 3
1 2 6
0 1 6
0 0
Sample Output
6.0000
Hint
The initial minimal cost is 5 by connecting city 0 to 1 and city 0 to 2. In the first suspicious case, the minimal total cost is increased to 6;
the second case remains 5; the third case is increased to 7. As the result, the expected cost is (5+6+7)/3 = 6.
题解:
很好的一道树形dp题··
每个询问x,y其实求的就是相邻的两个子树x,y的最短距离··我们用best[x][y]表示
由于q很大··上述值肯定是通过预处理求出···首先求出最开始的最小生成树,接着我们要先求得f[i][j],表示以i为根节点,通过非生成树边到达j所在子树的最短距离···对此我们一一枚举0——n-1作为根节点然后树形dp即可求得···
求完f[i][j]的话best[x][y]就很简单了··我们只需枚举y所在子树的所有节点u··求出f[u][x]的最小值即可··最后再与新的增大的边c比较一下取最小值就可以了
代码:
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<ctime>
#include<cctype>
#include<algorithm>
using namespace std;
const int N=;
const int M=9e6+;
const int inf=0x3f3f3f3f;
inline int R()
{
char c;int f=;
for(c=getchar();c<''||c>'';c=getchar());
for(;c<=''&&c>='';c=getchar()) f=(f<<)+(f<<)+c-'';
return f;
}
struct node
{
int a,b,val;
}ed[M];
int n,m,q,fst[N],nxt[N*],go[N*],val[N*],tot,father[N],map[N][N],f[N][N],best[N][N];
double sum=,ans=;
bool jud[N][N];
inline int get(int a)
{
if(father[a]==a) return a;
else return father[a]=get(father[a]);
}
inline bool cmp(node a,node b)
{
return a.val<b.val;
}
inline void comb(int a,int b,int c)
{
nxt[++tot]=fst[a],fst[a]=tot,go[tot]=b,val[tot]=c;
nxt[++tot]=fst[b],fst[b]=tot,go[tot]=a,val[tot]=c;
}
inline void pre()
{
tot=;ans=sum=;
for(int i=;i<n;i++) father[i]=i;
memset(fst,,sizeof(fst));memset(map,inf,sizeof(map));
memset(f,inf,sizeof(f));memset(jud,false,sizeof(jud));
memset(best,inf,sizeof(best));
}
inline int dfs1(int u,int fa,int rt)
{
for(int e=fst[u];e;e=nxt[e])
{
int v=go[e];if(v==fa) continue;
f[rt][u]=min(f[rt][u],dfs1(v,u,rt));
}
if(fa!=rt) f[rt][u]=min(f[rt][u],map[rt][u]);
return f[rt][u];
}
inline int dfs2(int u,int fa,int rt)
{
int ans=f[u][rt];
for(int e=fst[u];e;e=nxt[e])
{
int v=go[e];if(v==fa) continue;
ans=min(ans,dfs2(v,u,rt));
}
return ans;
}
inline void dp()
{
for(int i=;i<n;i++)
dfs1(i,-,i);
for(int i=;i<n;i++)
for(int e=fst[i];e;e=nxt[e])
{
int v=go[e];best[i][v]=best[v][i]=dfs2(v,i,i);
}
}
int main()
{
// freopen("a.in","r",stdin);
while(~scanf("%d%d",&n,&m)&&(n+m))
{
int a,b,c;pre();
for(int i=;i<=m;i++)
{
a=R(),b=R(),c=R();map[a][b]=map[b][a]=c;
ed[i].a=a,ed[i].b=b,ed[i].val=c;
}
sort(ed+,ed+m+,cmp);int temp=;
for(int i=;i<=m;i++)
{
int fa=get(ed[i].a),fb=get(ed[i].b);
if(fa!=fb)
{
sum+=ed[i].val;
father[fa]=fb;temp++;
comb(ed[i].a,ed[i].b,ed[i].val);
jud[ed[i].a][ed[i].b]=jud[ed[i].b][ed[i].a]=true;
}
if(temp==n-) break;
}
dp();
q=R();
for(int t=;t<=q;t++)
{
a=R(),b=R(),c=R();
if(!jud[a][b]) ans+=sum;
else
{
int temp=min(c,best[a][b]);
ans+=(sum-map[a][b]+temp);
}
}
ans=(double)ans/q;
printf("%0.4f\n",ans);
}
return ;
}
刷题总结——Genghis Khan the Conqueror (hdu4126)的更多相关文章
- HDU 4126 Genghis Khan the Conqueror 最小生成树+树形dp
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4126 Genghis Khan the Conqueror Time Limit: 10000/50 ...
- HDU-4126 Genghis Khan the Conqueror 树形DP+MST (好题)
题意:给出一个n个点m条边的无向边,q次询问每次询问把一条边权值增大后问新的MST是多少,输出Sum(MST)/q. 解法:一开始想的是破圈法,后来想了想应该不行,破圈法应该只能用于加边的情况而不是修 ...
- 「日常训练」 Genghis Khan the Conqueror(HDU-4126)
题意 给定\(n\)个点和\(m\)条无向边(\(n\le 3000\)),需要将这\(n\)个点连通.但是有\(Q\)次(\(Q\le 10^4\))等概率的破坏,每次破坏会把\(m\)条边中的某条 ...
- UVA- 1504 - Genghis Khan the Conqueror(最小生成树-好题)
题意: n个点,m个边,然后给出m条边的顶点和权值,其次是q次替换,每次替换一条边,给出每次替换的边的顶点和权值,然后求出这次替换的最小生成树的值; 最后要你输出:q次替换的平均值.其中n<30 ...
- 【Uvalive 5834】 Genghis Khan the Conqueror (生成树,最优替代边)
[题意] 一个N个点的无向图,先生成一棵最小生成树,然后给你Q次询问,每次询问都是x,y,z的形式, 表示的意思是在原图中将x,y之间的边增大(一定是变大的)到z时,此时最小生成数的值是多少.最后求Q ...
- HDU 4126 Genghis Khan the Conqueror MST+树形dp
题意: 给定n个点m条边的无向图. 以下m行给出边和边权 以下Q个询问. Q行每行给出一条边(一定是m条边中的一条) 表示改动边权. (数据保证改动后的边权比原先的边权大) 问:改动后的最小生成树的权 ...
- uvalive 5834 Genghis Khan The Conqueror
题意: 给出一个图,边是有向的,现在给出一些边的变化的信息(权值大于原本的),问经过这些变换后,MST总权值的期望,假设每次变换的概率是相等的. 思路: 每次变换的概率相等,那么就是求算术平均. 首先 ...
- HDU 4126 Genghis Khan the Conqueror (树形DP+MST)
题意:给一图,n个点,m条边,每条边有个花费,给出q条可疑的边,每条边有新的花费,每条可疑的边出现的概率相同,求不能经过原来可疑边 (可以经过可疑边新的花费构建的边),注意每次只出现一条可疑的边,n个 ...
- HDU4126Genghis Khan the Conqueror(最小生成树+并查集)
Genghis Khan the Conqueror Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 327680/327680 K ...
随机推荐
- js常见问题总结归纳
一.使用 typeof bar === "object" 来确定 bar 是否是对象的潜在陷阱是什么?如何避免这个陷阱? 首先typeof bar === "object ...
- 可拖拽div
在开发的时候需要一个可拖拽的prompt弹框.自己写了一个,大概思路为: 1.获取鼠标左键按下移动的起点坐标(x,y). 2.获取div的left和top属性. 3.得到鼠标坐标到左上角的距离(x-t ...
- k8s使用自定义证书将客户端认证接入到API Server
自定义证书使用kubectl认证接入API Serverkubeconfig是API Server的客户端连入API Server时使用的认证格式的客户端配置文件.使用kubectl config v ...
- uncompressing linux .................................................后没反应解决办法
编译kernel是的no machine record defined 错误,网上有一些解法,其实都是错误的,以讹传讹.不打算自己写,找到一篇还算靠谱的,转摘一下. 其根本原因是没有在 __proc_ ...
- spring boot 设置tomcat post参数限制
今天传图片,用的base64字符串,POST方法,前端传送的时候总是莫名其妙的崩溃,去网上搜了半天,以为是文件大小被限制了,但是我这个是字符串接收,不是文件接收,于是又继续搜,原来post本身没有参数 ...
- wget常用下载命令
wget wget是一个从网络上自动下载文件的自由工具,支持通过HTTP.HTTPS.FTP三个最常见的TCP/IP协议下载,并可以使用HTTP代理.wget名称的由来是“World Wide Web ...
- 【PyTorch深度学习】学习笔记之PyTorch与深度学习
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分 ...
- Fragment 和 Activity 之间通信
在 Activity 中获取 Fragment 实例: FragmentManager 提供了一个类似于 findViewById 的方法,专门用于从布局文件中获取 Fragment 实例: //通过 ...
- 49、android studio 使用技巧记录
1.删除 cmd+del 2.自动导入需要的类 option+enter 3.Option + F7 ——查找哪里引用了该方 Cmd + Option + F7 —— 列出引用的列表 4.Cmd + ...
- pycharm的常用操作:设置字体主题,注释整段代码,调整格式,批量替换等
1.调出常用工具栏 调出的结果是下面这样的: 2.调出常用工具按钮 调出的结果如下: 3. 调整主题及文字大小 ps:如果设置后没变,需要多设置几次就好了. 4. 统一后退几格调整对齐格式 选中要调整 ...