Friendship
Time Limit: 2000MS   Memory Limit: 20000K
Total Submissions: 10744   Accepted: 2984

Description

In modern society, each person has his own friends. Since all the people are very busy, they communicate with each other only by phone. You can assume that people A can keep in touch with people B, only if 
1. A knows B's phone number, or 
2. A knows people C's phone number and C can keep in touch with B. 
It's assured that if people A knows people B's number, B will also know A's number.

Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time.

In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,...,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T.

Input

The first line of the input contains three integers N (2<=N<=200), S and T ( 1 <= S, T <= N , and S is not equal to T).Each of the following N lines contains N integers. If i knows j's number, then the j-th number in the (i+1)-th line will be 1, otherwise the number will be 0.

You can assume that the number of 1s will not exceed 5000 in the input.

Output

If there is no way to make A lose touch with B, print "NO ANSWER!" in a single line. Otherwise, the first line contains a single number t, which is the minimal number you have got, and if t is not zero, the second line is needed, which contains t integers in ascending order that indicate the number of people who meet bad things. The integers are separated by a single space.

If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, ..., At (1 <= A1 < A2 <...< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N. The input will assure that there won't be two solutions with the minimal score.

Sample Input

3 1 3
1 1 0
1 1 1
0 1 1

Sample Output

1
2

题目链接:POJ 1815

给了一个用邻接矩阵表示的无向图,断开S与T点的最少点数集且这个集合不能包含S与T,若这个集合不为0,则输出字典序最小的一种方案。

题意显然是求最少割点集,肯定要拆点了, 考虑原图一个人的影响,去掉这个人则与与他直接连接的人均无法连接到他,因此自身拆出来的边流量为1,为了保证S与T不在集合中,这两个点的边流量为INF,然后顺序枚举各个点,若去掉当前点流量变小了当前边权的值,则说明这个点就在割边集中。

代码:

#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 210;
struct edge
{
int to, nxt, cap;
edge() {}
edge(int _to, int _nxt, int _cap): to(_to), nxt(_nxt), cap(_cap) {}
} E[(N * (N >> 1) + N) << 2];
int G[N][N];
int head[N << 1], tot;
int d[N << 1];
bool del[N]; void init()
{
CLR(head, -1);
tot = 0;
CLR(del, false);
}
void resetG()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, int c)
{
E[tot] = edge(t, head[s], c);
head[s] = tot++;
E[tot] = edge(s, head[t], 0);
head[t] = tot++;
}
int bfs(int s, int t)
{
CLR(d, -1);
d[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
int dfs(int s, int t, int f)
{
if (s == t || !f)
return f;
int ret = 0;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0)
{
int df = dfs(v, t, min(f, E[i].cap));
if (df > 0)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
ret += df;
if (!(f -= df))
break;
}
}
}
if (!ret)
d[s] = -2;
return ret;
}
int dinic(int s, int t)
{
int ret = 0;
while (bfs(s, t))
ret += dfs(s, t, INF);
return ret;
}
int main(void)
{
int n, S, T, i, j;
while (~scanf("%d%d%d", &n, &S, &T))
{
init();
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= n; ++j)
scanf("%d", &G[i][j]);
}
if (G[S][T])
puts("NO ANSWER!");
else
{
vector<int>vec;
int mf = 0;
for (int pos = 0; pos <= n; ++pos)
{
if (pos == S || pos == T)
continue;
del[pos] = true;
resetG();
for (j = 1; j <= n; ++j)
{
if (!del[j])
{
if (j == S || j == T)
{
add(j, j + n, INF); //2n
add(j + n, j, INF);
}
else
{
add(j, j + n, 1);
add(j + n, j, 1);
}
}
}
for (i = 1; i <= n; ++i) //无向图只需用到上三角
{
for (j = i + 1; j <= n; ++j)
{
if (G[i][j])
{
add(i + n, j, INF); //2*n*n/2
add(j + n, i, INF);
}
}
}
int tf = dinic(S + n, T);
if (!pos)
mf = tf;
else if (mf - tf == 1)
{
mf = tf;
vec.push_back(pos);
}
else
del[pos] = false;
}
int sz = vec.size();
printf("%d\n", sz);
for (i = 0; i < sz; ++i)
printf("%d%s", vec[i], i == sz - 1 ? "\n" : " ");
}
}
return 0;
}

POJ 1815 Friendship(字典序最小的最小割)的更多相关文章

  1. poj 1815 Friendship 字典序最小+最小割

    题目链接:http://poj.org/problem?id=1815 In modern society, each person has his own friends. Since all th ...

  2. POJ 1815 Friendship ★(字典序最小点割集)

    [题意]给出一个无向图,和图中的两个点s,t.求至少去掉几个点后才能使得s和t不连通,输出这样的点集并使其字典序最大. 不错的题,有助于更好的理解最小割和求解最小割的方法~ [思路] 问题模型很简单, ...

  3. POJ 1815 Friendship(最小割+字典序输出割点)

    http://poj.org/problem?id=1815 题意: 在现代社会,每个人都有自己的朋友.由于每个人都很忙,他们只通过电话联系.你可以假定A可以和B保持联系,当且仅当:①A知道B的电话号 ...

  4. POJ 1815 Friendship(最小割)

    http://poj.org/problem? id=1815 Friendship Time Limit: 2000MS   Memory Limit: 20000K Total Submissio ...

  5. POJ 1815 Friendship (Dinic 最小割)

    Friendship Time Limit: 2000MS   Memory Limit: 20000K Total Submissions: 8025   Accepted: 2224 Descri ...

  6. poj 1815 Friendship (最小割+拆点+枚举)

    题意: 就在一个给定的无向图中至少应该去掉几个顶点才干使得s和t不联通. 算法: 假设s和t直接相连输出no answer. 把每一个点拆成两个点v和v'',这两个点之间连一条权值为1的边(残余容量) ...

  7. poj 1815 Friendship【最小割】

    网络流的题总是出各种奇怪的错啊--没写过邻接表版的dinic,然后bfs扫到t点不直接return 1就会TTTTTLE-- 题目中的操作是"去掉人",很容易想到拆点,套路一般是( ...

  8. POJ 1815 - Friendship - [拆点最大流求最小点割集][暴力枚举求升序割点] - [Dinic算法模板 - 邻接矩阵型]

    妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Tim ...

  9. POJ 1815 Friendship(最大流最小割の字典序割点集)

    Description In modern society, each person has his own friends. Since all the people are very busy, ...

随机推荐

  1. SpringMVC-响应数据和结果视图

    返回值分类 1. 字符串 controller 方法返回字符串可以指定逻辑视图名,通过视图解析器解析为物理视图地址. 2. void 在 controller 方法形参上可以定义 request 和 ...

  2. 2018.2.2 java中的Date如何获取 年月日时分秒

    package com.util; import java.text.DateFormat; import java.util.Calendar; import java.util.Date; pub ...

  3. python_65_生成器1

    # map()函数 # map()是 Python 内置的高阶函数,它接收一个函数 f 和一个 list,并通过把函数 f 依次作用在 list 的每个元素上,得到一个新的 list 并返回. # 例 ...

  4. Linux学习记录(一)

    1.Linux的简介 1.1.Linux的概述 Linux是基于Unix的开源免费的操作系统,由于系统的稳定性和安全性几乎成为程序代码运行的最佳系统环境.Linux是由Linus Torvalds(林 ...

  5. GMap.Net解决方案之在WinForm和WPF中使用GMap.Net地图插件的开发

    在做地理位置相关的开发时,总是面临高额地图引擎费用让大部分用户望而却步,加之地图数据又是天价,那么GMap.NET就是首选了,它本身就是开源免费,服务器可以在本地缓存,以后访问时就可以直接访问. 可以 ...

  6. 处理侧滑返回与 ScrollView 手势冲突

    与处理双击.单击手势互斥原则一样: // 手势互斥(侧滑返回手势失效后才响应UITableView的滑动手势) [tableView.panGestureRecognizer requireGestu ...

  7. swiper动画效果

    参考swiper官方网站:http://www.swiper.com.cn/ Swiper常用于移动端网站的内容触摸滑动: 结构展示:   纯javascript打造的滑动特效插件,面向手机.平板电脑 ...

  8. C/C++ 程序基础 (一)基本语法

    域操作符: C++ 支持通过域操作符访问全局变量,C不支持(识别为重定义) ++i和i++的效率分析: 内置类型,无区别 自定义数据类型,++i可以返回引用,i++只能返回对象值(拷贝开销) 浮点数与 ...

  9. Mybatis中的增删改查

    相比jdbc mybatis在操作数据库方面比jdbc节省了大量的代码,及大量的代码冗余.使得操作起来更加简洁. 在Mapper中分别有着 select,insert, update,delete的这 ...

  10. 3 个用于数据科学的顶级 Python 库

    使用这些库把 Python 变成一个科学数据分析和建模工具. Python 的许多特性,比如开发效率.代码可读性.速度等使之成为了数据科学爱好者的首选编程语言.对于想要升级应用程序功能的数据科学家和机 ...