POJ 1815 Friendship(字典序最小的最小割)
Time Limit: 2000MS | Memory Limit: 20000K | |
Total Submissions: 10744 | Accepted: 2984 |
Description
1. A knows B's phone number, or
2. A knows people C's phone number and C can keep in touch with B.
It's assured that if people A knows people B's number, B will also know A's number.
Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time.
In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,...,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T.
Input
You can assume that the number of 1s will not exceed 5000 in the input.
Output
If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, ..., At (1 <= A1 < A2 <...< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N. The input will assure that there won't be two solutions with the minimal score.
Sample Input
3 1 3
1 1 0
1 1 1
0 1 1
Sample Output
1
2
题目链接:POJ 1815
给了一个用邻接矩阵表示的无向图,断开S与T点的最少点数集且这个集合不能包含S与T,若这个集合不为0,则输出字典序最小的一种方案。
题意显然是求最少割点集,肯定要拆点了, 考虑原图一个人的影响,去掉这个人则与与他直接连接的人均无法连接到他,因此自身拆出来的边流量为1,为了保证S与T不在集合中,这两个点的边流量为INF,然后顺序枚举各个点,若去掉当前点流量变小了当前边权的值,则说明这个点就在割边集中。
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 210;
struct edge
{
int to, nxt, cap;
edge() {}
edge(int _to, int _nxt, int _cap): to(_to), nxt(_nxt), cap(_cap) {}
} E[(N * (N >> 1) + N) << 2];
int G[N][N];
int head[N << 1], tot;
int d[N << 1];
bool del[N]; void init()
{
CLR(head, -1);
tot = 0;
CLR(del, false);
}
void resetG()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, int c)
{
E[tot] = edge(t, head[s], c);
head[s] = tot++;
E[tot] = edge(s, head[t], 0);
head[t] = tot++;
}
int bfs(int s, int t)
{
CLR(d, -1);
d[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
int dfs(int s, int t, int f)
{
if (s == t || !f)
return f;
int ret = 0;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0)
{
int df = dfs(v, t, min(f, E[i].cap));
if (df > 0)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
ret += df;
if (!(f -= df))
break;
}
}
}
if (!ret)
d[s] = -2;
return ret;
}
int dinic(int s, int t)
{
int ret = 0;
while (bfs(s, t))
ret += dfs(s, t, INF);
return ret;
}
int main(void)
{
int n, S, T, i, j;
while (~scanf("%d%d%d", &n, &S, &T))
{
init();
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= n; ++j)
scanf("%d", &G[i][j]);
}
if (G[S][T])
puts("NO ANSWER!");
else
{
vector<int>vec;
int mf = 0;
for (int pos = 0; pos <= n; ++pos)
{
if (pos == S || pos == T)
continue;
del[pos] = true;
resetG();
for (j = 1; j <= n; ++j)
{
if (!del[j])
{
if (j == S || j == T)
{
add(j, j + n, INF); //2n
add(j + n, j, INF);
}
else
{
add(j, j + n, 1);
add(j + n, j, 1);
}
}
}
for (i = 1; i <= n; ++i) //无向图只需用到上三角
{
for (j = i + 1; j <= n; ++j)
{
if (G[i][j])
{
add(i + n, j, INF); //2*n*n/2
add(j + n, i, INF);
}
}
}
int tf = dinic(S + n, T);
if (!pos)
mf = tf;
else if (mf - tf == 1)
{
mf = tf;
vec.push_back(pos);
}
else
del[pos] = false;
}
int sz = vec.size();
printf("%d\n", sz);
for (i = 0; i < sz; ++i)
printf("%d%s", vec[i], i == sz - 1 ? "\n" : " ");
}
}
return 0;
}
POJ 1815 Friendship(字典序最小的最小割)的更多相关文章
- poj 1815 Friendship 字典序最小+最小割
题目链接:http://poj.org/problem?id=1815 In modern society, each person has his own friends. Since all th ...
- POJ 1815 Friendship ★(字典序最小点割集)
[题意]给出一个无向图,和图中的两个点s,t.求至少去掉几个点后才能使得s和t不连通,输出这样的点集并使其字典序最大. 不错的题,有助于更好的理解最小割和求解最小割的方法~ [思路] 问题模型很简单, ...
- POJ 1815 Friendship(最小割+字典序输出割点)
http://poj.org/problem?id=1815 题意: 在现代社会,每个人都有自己的朋友.由于每个人都很忙,他们只通过电话联系.你可以假定A可以和B保持联系,当且仅当:①A知道B的电话号 ...
- POJ 1815 Friendship(最小割)
http://poj.org/problem? id=1815 Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissio ...
- POJ 1815 Friendship (Dinic 最小割)
Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissions: 8025 Accepted: 2224 Descri ...
- poj 1815 Friendship (最小割+拆点+枚举)
题意: 就在一个给定的无向图中至少应该去掉几个顶点才干使得s和t不联通. 算法: 假设s和t直接相连输出no answer. 把每一个点拆成两个点v和v'',这两个点之间连一条权值为1的边(残余容量) ...
- poj 1815 Friendship【最小割】
网络流的题总是出各种奇怪的错啊--没写过邻接表版的dinic,然后bfs扫到t点不直接return 1就会TTTTTLE-- 题目中的操作是"去掉人",很容易想到拆点,套路一般是( ...
- POJ 1815 - Friendship - [拆点最大流求最小点割集][暴力枚举求升序割点] - [Dinic算法模板 - 邻接矩阵型]
妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Tim ...
- POJ 1815 Friendship(最大流最小割の字典序割点集)
Description In modern society, each person has his own friends. Since all the people are very busy, ...
随机推荐
- 如何更改VirtualBox虚拟电脑内存大小
- 洛谷P1220 关路灯【区间dp】
题目:https://www.luogu.org/problemnew/show/P1220 题意:给定n盏灯的位置和功率,初始时站在第c盏处. 关灯不需要时间,走的速度是1单位/秒.问把所有的灯关掉 ...
- C#继承机制 多级继承
一些面向对象语言允许一个类从多个基类中继承,而另一些面向对象语言只允许从一个类继承,但可以随意从几个接口或纯抽象类中继承. 只有C++支持多级继承,许多程序员对此褒贬不一.多级继承常会引起继承来的类之 ...
- 第十一篇、UITableView headerview下拉放大
核心代码: -(void)createTableViewHeaderView{ _tableViewHeaderView = [[UIView alloc] initWithFrame:(CGRect ...
- C# DateTime的使用
获得当前系统时间: DateTime dt = DateTime.Now; Environment.TickCount可以得到“系统启动到现在”的毫秒值 DateTime now = DateTime ...
- 洛谷P3371单源最短路径SPFA算法
SPFA同样是一种基于贪心的算法,看过之前一篇blog的读者应该可以发现,SPFA和堆优化版的Dijkstra如此的相似,没错,但SPFA有一优点是Dijkstra没有的,就是它可以处理负边的情况. ...
- SAP系统管理中常见问题解答(转载)
1.如何查看SAP系统的位数? system——status看 Platform ID Platform 32-bit 64-bit --------------------------------- ...
- read指令使用方法
read命令用于从标准输入中读取输入单行,并将读取的单行根据IFS变量分裂成多个字段,并将分割后的字段分别赋值给指定的变量列表var_name.第一个字段分配给第一个变量var_name1,第二个字段 ...
- JZOJ 5793. 【NOIP2008模拟】小S练跑步
5793. [NOIP2008模拟]小S练跑步 (File IO): input:run.in output:run.out Time Limits: 2000 ms Memory Limits: ...
- Flask初学者:Python虚拟环境,Flask安装,helloworld,run方法
一.Python虚拟环境: 作用:使Python框架的不同版本可以在同一台电脑上运行.如果在电脑上全局(C盘或者其他目录)安装Flask(或其他Python框架),当你使用其他版本的Flask(比如有 ...