POJ 1815 Friendship(字典序最小的最小割)
Time Limit: 2000MS | Memory Limit: 20000K | |
Total Submissions: 10744 | Accepted: 2984 |
Description
1. A knows B's phone number, or
2. A knows people C's phone number and C can keep in touch with B.
It's assured that if people A knows people B's number, B will also know A's number.
Sometimes, someone may meet something bad which makes him lose touch with all the others. For example, he may lose his phone number book and change his phone number at the same time.
In this problem, you will know the relations between every two among N people. To make it easy, we number these N people by 1,2,...,N. Given two special people with the number S and T, when some people meet bad things, S may lose touch with T. Your job is to compute the minimal number of people that can make this situation happen. It is supposed that bad thing will never happen on S or T.
Input
You can assume that the number of 1s will not exceed 5000 in the input.
Output
If there is more than one solution, we give every solution a score, and output the solution with the minimal score. We can compute the score of a solution in the following way: assume a solution is A1, A2, ..., At (1 <= A1 < A2 <...< At <=N ), the score will be (A1-1)*N^t+(A2-1)*N^(t-1)+...+(At-1)*N. The input will assure that there won't be two solutions with the minimal score.
Sample Input
3 1 3
1 1 0
1 1 1
0 1 1
Sample Output
1
2
题目链接:POJ 1815
给了一个用邻接矩阵表示的无向图,断开S与T点的最少点数集且这个集合不能包含S与T,若这个集合不为0,则输出字典序最小的一种方案。
题意显然是求最少割点集,肯定要拆点了, 考虑原图一个人的影响,去掉这个人则与与他直接连接的人均无法连接到他,因此自身拆出来的边流量为1,为了保证S与T不在集合中,这两个点的边流量为INF,然后顺序枚举各个点,若去掉当前点流量变小了当前边权的值,则说明这个点就在割边集中。
代码:
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <cstdlib>
#include <sstream>
#include <numeric>
#include <cstring>
#include <bitset>
#include <string>
#include <deque>
#include <stack>
#include <cmath>
#include <queue>
#include <set>
#include <map>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 210;
struct edge
{
int to, nxt, cap;
edge() {}
edge(int _to, int _nxt, int _cap): to(_to), nxt(_nxt), cap(_cap) {}
} E[(N * (N >> 1) + N) << 2];
int G[N][N];
int head[N << 1], tot;
int d[N << 1];
bool del[N]; void init()
{
CLR(head, -1);
tot = 0;
CLR(del, false);
}
void resetG()
{
CLR(head, -1);
tot = 0;
}
inline void add(int s, int t, int c)
{
E[tot] = edge(t, head[s], c);
head[s] = tot++;
E[tot] = edge(s, head[t], 0);
head[t] = tot++;
}
int bfs(int s, int t)
{
CLR(d, -1);
d[s] = 0;
queue<int>Q;
Q.push(s);
while (!Q.empty())
{
int u = Q.front();
Q.pop();
for (int i = head[u]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == -1 && E[i].cap > 0)
{
d[v] = d[u] + 1;
if (v == t)
return 1;
Q.push(v);
}
}
}
return ~d[t];
}
int dfs(int s, int t, int f)
{
if (s == t || !f)
return f;
int ret = 0;
for (int i = head[s]; ~i; i = E[i].nxt)
{
int v = E[i].to;
if (d[v] == d[s] + 1 && E[i].cap > 0)
{
int df = dfs(v, t, min(f, E[i].cap));
if (df > 0)
{
E[i].cap -= df;
E[i ^ 1].cap += df;
ret += df;
if (!(f -= df))
break;
}
}
}
if (!ret)
d[s] = -2;
return ret;
}
int dinic(int s, int t)
{
int ret = 0;
while (bfs(s, t))
ret += dfs(s, t, INF);
return ret;
}
int main(void)
{
int n, S, T, i, j;
while (~scanf("%d%d%d", &n, &S, &T))
{
init();
for (i = 1; i <= n; ++i)
{
for (j = 1; j <= n; ++j)
scanf("%d", &G[i][j]);
}
if (G[S][T])
puts("NO ANSWER!");
else
{
vector<int>vec;
int mf = 0;
for (int pos = 0; pos <= n; ++pos)
{
if (pos == S || pos == T)
continue;
del[pos] = true;
resetG();
for (j = 1; j <= n; ++j)
{
if (!del[j])
{
if (j == S || j == T)
{
add(j, j + n, INF); //2n
add(j + n, j, INF);
}
else
{
add(j, j + n, 1);
add(j + n, j, 1);
}
}
}
for (i = 1; i <= n; ++i) //无向图只需用到上三角
{
for (j = i + 1; j <= n; ++j)
{
if (G[i][j])
{
add(i + n, j, INF); //2*n*n/2
add(j + n, i, INF);
}
}
}
int tf = dinic(S + n, T);
if (!pos)
mf = tf;
else if (mf - tf == 1)
{
mf = tf;
vec.push_back(pos);
}
else
del[pos] = false;
}
int sz = vec.size();
printf("%d\n", sz);
for (i = 0; i < sz; ++i)
printf("%d%s", vec[i], i == sz - 1 ? "\n" : " ");
}
}
return 0;
}
POJ 1815 Friendship(字典序最小的最小割)的更多相关文章
- poj 1815 Friendship 字典序最小+最小割
题目链接:http://poj.org/problem?id=1815 In modern society, each person has his own friends. Since all th ...
- POJ 1815 Friendship ★(字典序最小点割集)
[题意]给出一个无向图,和图中的两个点s,t.求至少去掉几个点后才能使得s和t不连通,输出这样的点集并使其字典序最大. 不错的题,有助于更好的理解最小割和求解最小割的方法~ [思路] 问题模型很简单, ...
- POJ 1815 Friendship(最小割+字典序输出割点)
http://poj.org/problem?id=1815 题意: 在现代社会,每个人都有自己的朋友.由于每个人都很忙,他们只通过电话联系.你可以假定A可以和B保持联系,当且仅当:①A知道B的电话号 ...
- POJ 1815 Friendship(最小割)
http://poj.org/problem? id=1815 Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissio ...
- POJ 1815 Friendship (Dinic 最小割)
Friendship Time Limit: 2000MS Memory Limit: 20000K Total Submissions: 8025 Accepted: 2224 Descri ...
- poj 1815 Friendship (最小割+拆点+枚举)
题意: 就在一个给定的无向图中至少应该去掉几个顶点才干使得s和t不联通. 算法: 假设s和t直接相连输出no answer. 把每一个点拆成两个点v和v'',这两个点之间连一条权值为1的边(残余容量) ...
- poj 1815 Friendship【最小割】
网络流的题总是出各种奇怪的错啊--没写过邻接表版的dinic,然后bfs扫到t点不直接return 1就会TTTTTLE-- 题目中的操作是"去掉人",很容易想到拆点,套路一般是( ...
- POJ 1815 - Friendship - [拆点最大流求最小点割集][暴力枚举求升序割点] - [Dinic算法模板 - 邻接矩阵型]
妖怪题目,做到现在:2017/8/19 - 1:41…… 不过想想还是值得的,至少邻接矩阵型的Dinic算法模板get√ 题目链接:http://poj.org/problem?id=1815 Tim ...
- POJ 1815 Friendship(最大流最小割の字典序割点集)
Description In modern society, each person has his own friends. Since all the people are very busy, ...
随机推荐
- 获取屏幕上的某个控件相对位置,尤其是tableviewcell上的某一个控件的相对位置
我的需求就是tableviewcell上的按钮,点击就会出现一个弹框: 主要就是获取,所点击的cell上控件的相对位置: CGPoint buttonCenter = CGPointMake(btn. ...
- python_47_Python2中字符编码与转码
#python3默认是Unicode,Unicode是万国码,不管中文字符还是英文,所有的每个字符都占2个字节空间,16位 #python2默认是ascii码 #ascii码不能存中文,一个英文只能占 ...
- Github的基本功能
著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处.作者:Fadeoc Khaos链接:http://www.zhihu.com/question/20070065/answer/30 ...
- SQLServer事务的原理
1.事务的概念 是数据库管理系统执行过程中的一个逻辑单元,由一个有限的数据库操作序列组成: 由事务开始(begin transaction)和事务结束(end transaction)之间执行的全体操 ...
- 由一道CTF pwn题深入理解libc2.26中的tcache机制
本文首发安全客:https://www.anquanke.com/post/id/104760 在刚结束的HITB-XCTF有一道pwn题gundam使用了2.26版本的libc.因为2.26版本中加 ...
- java字符格式
http://blog.chinaunix.net/uid-12348673-id-3335300.html http://blog.csdn.net/zhouyong80/article/detai ...
- Android驱动开发5-7总结
Android深度探索5-7章总结 介绍了S3C6410开发板的功能,开发板的不同主要是在烧录嵌入式系统的方式不同,以及如何在此开发板上安装Android.紧接着学到介绍到如何在多种平台,使用多种方式 ...
- 32-1题:不分行从上到下打印二叉树/BFS/deque/queue
题目 从上往下打印出二叉树的每个节点,同层节点从左至右打印. 考点 1.广度优先遍历 2.binary tree 3.queue 4.deque 思路 按层打印:8.6.10.5.7.9.11 用ST ...
- 【前端_js】理解 JavaScript 的 async/await
async 和 await 在干什么 任意一个名称都是有意义的,先从字面意思来理解.async 是“异步”的简写,而 await 可以认为是 async wait 的简写.所以应该很好理解 async ...
- linux系统监控工具glances
glances linux系统自带了很多系统性能监控工具,如top,vmstat,iftop等等,还有一款监视工具glances,它能把其他几个监控的指标都集于一身.Glances是一个相对比较新的系 ...