洛谷P1822 魔法指纹 【分块打表】
题目
对于任意一个至少两位的正整数n,按如下方式定义magic(n):将n按十进制顺序写下来,依次对相邻两个数写下差的绝对值。这样,得到了一个新数,去掉前导0,则定义为magic(n)。若n为一位数,则magic(n)=n。
例如:magic(5913)=482,magic(1198)=081=81,magic(666)=00=0。
对任意一个数n,序列n,magic(n),magic(magic(n)),…迟早会变成一个一位数。最后的这个值称为数n的magic指纹。
例如,对于n=5913,我们得到序列:5913,482,46,2。所以5913的magic指纹为2。
若一个数的magic指纹为7,则认为这个数是个幸运数。
现在,给定A,B,计算出[A,B]中有多少个数是幸运数。
输入:
输入两行,每行一个数。第一行是A,第二行表示B。
输出:
输出[A,B]中有多少个数是幸运数。
输入格式
输入两行,每行一个数。第一行是A,第二行表示B。
输出格式
输出[A,B]中有多少个数是幸运数。
输入样例
1
9
输出样例
1
提示
数据范围:
对30%数据,B≤10000。
对100%数据,0<A≤B≤1,000,000,000。
题解
这解法。。无敌了
分块大法好
将区间分\(\sqrt{N}\)块,打表出每一块的答案【暴力打个1min就差不多了】
询问时\(O(\sqrt{N})\)统计,最后一块\(O(\sqrt{N}*10)\)暴力计算
这暴力太优美了
打表程序【记得先调一下再打。。别打半天打出个错的表】
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 32000,maxm = 1000000001,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int cal(int n){
int x,p;
while (n / 10){
x = n; p = 1; n = 0;
while (x / 10) n += p * abs((x % 10) - (x / 10 % 10)),p *= 10,x /= 10;
}
return n;
}
int main(){
freopen("biao.txt","w",stdout);
printf("{");
int B = (int)sqrt(1000000000),now = 0,ans = 0;
for (int i = 1; i <= 1000000000; i++){
if (i / B > now) now = i / B,printf("%d,",ans),ans = 0;
if (cal(i) == 7) ans++;
}
printf("}");
/*while (true){
int n = read();
printf("%d\n",cal(n));
}*/
return 0;
}
AC程序【省略打表部分】
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
int biao[]={/*此处过于壮观,就略去了*/};
int L,R;
int cal(int n){
int x,p;
while (n / 10){
x = n; p = 1; n = 0;
while (x / 10) n += p * abs((x % 10) - (x / 10 % 10)),p *= 10,x /= 10;
}
return n;
}
int main(){
cin>>L>>R; L--;
int ans = 0,T = (int)sqrt(1000000000),bl = L / T,br = R / T;
for (int i = bl; i < br; i++) ans += biao[i];
for (int i = br * T; i <= R; i++) ans += (cal(i) == 7);
for (int i = bl * T; i <= L; i++) ans -= (cal(i) == 7);
printf("%d\n",ans);
return 0;
}
洛谷P1822 魔法指纹 【分块打表】的更多相关文章
- [洛谷P1822] 魔法指纹
洛谷题目连接:魔法指纹 题目描述 对于任意一个至少两位的正整数n,按如下方式定义magic(n):将n按十进制顺序写下来,依次对相邻两个数写下差的绝对值.这样,得到了一个新数,去掉前导0,则定义为ma ...
- 洛谷 U87561 魔法月饼
洛谷 U87561 魔法月饼 洛谷传送门 题目背景 \(9102\)年的中秋节注定与往年不同...因为在\(9102\)年的中秋节前夕,\(Seaway\)被告知今年的中秋节要新出一款月饼--魔法月饼 ...
- 洛谷P4198 楼房重建 (分块)
洛谷P4198 楼房重建 题目描述 小A的楼房外有一大片施工工地,工地上有N栋待建的楼房.每天,这片工地上的房子拆了又建.建了又拆.他经常无聊地看着窗外发呆,数自己能够看到多少栋房子. 为了简化问题, ...
- 洛谷P4135 作诗 (分块)
洛谷P4135 作诗 题目描述 神犇SJY虐完HEOI之后给傻×LYD出了一题: SHY是T国的公主,平时的一大爱好是作诗. 由于时间紧迫,SHY作完诗之后还要虐OI,于是SHY找来一篇长度为N的文章 ...
- P1822 魔法指纹
一道放在分块训练中的分块打表屑题 看了神NaCly_Fish的题解学了间隔打表(话说这么屑的东西有什么学的必要吗) 内容大多摘自大佬的题解 1,答案可递推,才适合间隔打表 什么叫可递推呢?假设f[n] ...
- 洛谷P3247 [HNOI2016]最小公倍数 [分块,并查集]
洛谷 思路 显然,为了达到这个最小公倍数,只能走\(a,b\)不是很大的边. 即,当前询问的是\(A,B\),那么我们只能走\(a\leq A,b\leq B\)的边. 然而,为了达到这最小公倍数,又 ...
- 洛谷P3247 [HNOI2016]最小公倍数(分块 带撤销加权并查集)
题意 题目链接 给出一张带权无向图,每次询问\((u, v)\)之间是否存在一条路径满足\(max(a) = A, max(b) = B\) Sol 这题居然是分块..想不到想不到..做这题的心路历程 ...
- 洛谷P3247 最小公倍数 [HNOI2016] 分块+并查集
正解:分块+并查集 解题报告: 传送门! 真的好神仙昂QAQ,,,完全想不出来,,,还是太菜了QAQ 首先还是要说下,这题可以用K-D Tree乱搞过去(数据结构是个好东西昂,,,要多学学QAQ),但 ...
- 【洛谷】【前缀和+st表】P2629 好消息,坏消息
[题目描述:] uim在公司里面当秘书,现在有n条消息要告知老板.每条消息有一个好坏度,这会影响老板的心情.告知完一条消息后,老板的心情等于之前老板的心情加上这条消息的好坏度.最开始老板的心情是0,一 ...
随机推荐
- 解决wget下载https时报错 --no-check-certificate (不检查证书)
如果使用 wget下载https开头的网址域名 时报错,你需要加上 --no-check-certificate (不检查证书)选项 例如: wget https://pypi.python.org/ ...
- Java中ArrayList的对象引用问题
前言事件起因是由于同事使用ArrayList的带参构造方法进行ArrayList对象复制,修改新的ArrayList对象中的元素(对象)的成员变量时也会修改原ArrayList中的元素(对象)的成员变 ...
- SQLServer事务的原理
1.事务的概念 是数据库管理系统执行过程中的一个逻辑单元,由一个有限的数据库操作序列组成: 由事务开始(begin transaction)和事务结束(end transaction)之间执行的全体操 ...
- CUDA 中dim3含义
- js中的||、&&与!用法
&&和||在JQuery源代码内尤为使用广泛,由网上找了些例子作为参考,对其用法研究了一下: 1. && function a(){ alert("a&quo ...
- grep过滤目录或文件方法
在使用grep在指定目录下查找包含指定字符串的文件是,我们想过滤(即不递归查询指定目录)时!可以使用 –exclude-dir 参数 单个目录实例 搜索.目录但不搜索在.目录下的.svg目录中包含&q ...
- 八、Linux 用户和用户组管理
Linux 用户和用户组管理 Linux系统是一个多用户多任务的分时操作系统,任何一个要使用系统资源的用户,都必须首先向系统管理员申请一个账号,然后以这个账号的身份进入系统. 用户的账号一方面可以帮助 ...
- JZOJ 5793. 【NOIP2008模拟】小S练跑步
5793. [NOIP2008模拟]小S练跑步 (File IO): input:run.in output:run.out Time Limits: 2000 ms Memory Limits: ...
- [Noip2016]换教室(期望+DP)
Description 题目链接:Luogu Solution 这题结合了DP和概率与期望,其实只要稍微知道什么是期望就可以了, 状态的构造很关键,\(F[i][j][0/1]\)表示已经到第\(i\ ...
- Tomcat 在 Linux 下的自动启动脚本
很多服务都需要设置为开机自启动.将下面代码复制到 /etc/rc.d/init.d/tomcat ,然后执行 chkconfig –add tomcat chkconfig tomcat on 就可以 ...