题面

传送门

思路

这题其实挺水的......做过餐巾计划问题就能明白,是同一个道理

首先,显然刚刚好满足每一个月的需求,会得到最优解(废话-_-||)

然后我们发现,货物在不同的月之间的转移,可以比喻为水在不同的几个平行管道之间流动

自然而然地想到网络流

那么,我们给每个月建立一个节点i,建立超级源点和超级汇点

从每个i连边(i,T),费用0,流量为这个月需求量

从S向每个月连边(S,i),费用为这个月的价格,流量无限(因为理论上你随便买都可以)

那么储存就是连边(i,i+1),费用为m,流量为S,这里的流量也很好地体现了限制作用

最后的答案就是(S-T)最小费用最大流了

需要注意的是,这道题里面的流量提供了两个限制:

一个是每个月可以买很多,但是我们输出只有要求的那么多,是一个下限转上限

另一个就是仓库容量,这个是直接把上限用流量表示出来了

由此,我们应当注意到,网络流中的流量上限其实不止可以表示一种决策的最大值

它也可以在一定的贪心和推导以后来表示最小值

所以做题的时候思路一定要大胆一些

说不定这就是个网络流题呢?

Code:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define inf 1e9
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
int first[5010],dis[5010],vis[5010],n,m,cnt=-1,ans;
struct edge{
int to,next,w,cap;
}a[600010];
inline void add(int u,int v,int w,int cap){
a[++cnt]=(edge){v,first[u],w,cap};first[u]=cnt;
a[++cnt]=(edge){u,first[v],-w,0};first[v]=cnt;
}
int q[1000010];
bool spfa(int s,int t){
int head=0,tail=1,i,u,v,w;
memset(dis,-1,sizeof(dis));memset(vis,0,sizeof(vis));
q[0]=t;dis[t]=0;vis[t]=1;
while(head<tail){
u=q[head++];vis[u]=0;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(a[i^1].cap&&((dis[v]==-1)||(dis[v]>dis[u]-w))){
dis[v]=dis[u]-w;
if(!vis[v]) q[tail++]=v,vis[v]=1;
}
}
}
return ~dis[s];
}
int _min(int l,int r){return (l>r)?r:l;}
int dfs(int u,int t,int limit){
if((u==t)||(!limit)){vis[u]=1;return limit;}
int i,v,f,flow=0,w;vis[u]=1;
for(i=first[u];~i;i=a[i].next){
v=a[i].to;w=a[i].w;
if(dis[v]==dis[u]-w&&a[i].cap&&!vis[v]){
if(!(f=dfs(v,t,_min(limit,a[i].cap)))) continue;
a[i].cap-=f;a[i^1].cap+=f;
ans+=f*w;flow+=f;limit-=f;
if(!limit) return flow;
}
}
return flow;
}
int zkw(int s,int t){
int re=0;
while(spfa(s,t)){
vis[t]=1;
while(vis[t]){
memset(vis,0,sizeof(vis));
re+=dfs(s,t,inf);
}
}
return re;
}
int main(){
memset(first,-1,sizeof(first));
n=read();m=read();int S=read(),i,t1;
for(i=1;i<=n;i++) t1=read(),add(i,n+1,0,t1);
for(i=1;i<=n;i++) t1=read(),add(0,i,t1,inf);
for(i=1;i<n;i++) add(i,i+1,m,S);
zkw(0,n+1);
cout<<ans<<endl;
}

[HAOI2010][bzoj2424] 订货 [费用流]的更多相关文章

  1. 【bzoj2424】[HAOI2010]订货 费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6825296.html 题目描述 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di, ...

  2. BZOJ2424 [HAOI2010]订货 - 费用流

    题解 (非常裸的费用流 题意有一点表明不清: 该月卖出的商品可以不用算进仓库里面. 然后套上费用流模板 代码 #include<cstring> #include<queue> ...

  3. BZOJ 2424: [HAOI2010]订货 费用流

    2424: [HAOI2010]订货 Description 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定第一月月 ...

  4. 【BZOJ2424】[HAOI2010]订货(费用流)

    [BZOJ2424][HAOI2010]订货(费用流) 题面 BZOJ 洛谷 题解 傻逼费用流吧... 一开始理解错意思了,仓库大小为\(m\)的含义是留到下个月最多为\(m\),而不是任意时刻的容量 ...

  5. 洛谷P2517 HAOI2010 订货 (费用流)

    标准的费用流问题,关键在于巧妙地建模 一共有n个月份,源点设为0,汇点设为n+1 1.源点向所有月份连边,容量为正无穷,费用为该月进货的费用 2.每个月向下一个月连边,容量为仓库容量,费用为存货费用 ...

  6. BZOJ 2424: [HAOI2010]订货(费用流)

    裸的费用流了= =从源点向每个点连费用为di,从汇点向每个点连流量为ui,每个点向下一个点连费用为m,流量为s的边就行了 CODE: #include<cstdio>#include< ...

  7. bzoj 2424: [HAOI2010]订货 (费用流)

    直接费用流,天数就是点数 type arr=record toward,next,cap,cost:longint; end; const maxm=; maxn=; mm=<<; var ...

  8. 【BZOJ】【2424】【HAOI2010】订货

    网络流/费用流 比较简单的题……我一开始想成像软件开发那题一样的做法了……就是每天拆点,S->i (INF,0) .i+n->T (u[i],0) 然后处理购入 S->i+n (IN ...

  9. 【HAOI2010】订货

    可以DP也可以是费用流,然而被我用非常简单的DP破了[开心] 原题: 某公司估计市场在第i个月对某产品的需求量为Ui,已知在第i月该产品的订货单价为di,上个月月底未销完的单位产品要付存贮费用m,假定 ...

随机推荐

  1. tmux 用z关闭之后的恢复

    ctrl+b 然后z是全屏 但是如果是ctrl+z就是关闭窗口了 tmux ls看所有窗口 然后 tmux attach -t 2或者3就恢复

  2. 【luogu P1783 海滩防御】 题解

    题目链接:https://www.luogu.org/problemnew/show/P1783 先把题目改造一下:题目所求是要一条能从0列到n列的路径,使其路径上的最大边长一半最小. 为什么是一半呢 ...

  3. CUDA && GPU中dim3介绍

  4. java设计模式——抽象工程模式

    一. 定义与类型 定义:抽象工厂模式提供一个创建一系列相关或相互依赖对象的接口,无须指定他们具体的类 类型:创建型 二. 适用场景 客户端不依赖于产品类实例如何备创建,实现等细节 创建一系列相关的产品 ...

  5. Spring学习记录(三)

    一.AOP的整理总结 aop面向切面编程 横向重复代码,纵向抽取 动态代理 1.通过动态代理可以体现aop思想 2.为什么要哦用动态代理:对目标对象中的方法进行增强 spring aop开发 spri ...

  6. Vue 父组件传值到子组件

    vue 父组件给子组件传值中 这里的AccessList就是子组件 如果 是静态传值的话直接  msg="xxx"就好 这里动态取值的话就  :msg=xxxxx ________ ...

  7. 入门学习Linux常用必会命令实例详解

    Linux提供了大量的命令,利用它可以有效地完成大量的工作,如磁盘操作.文件存取.目录操作.进程管理.文件权限设定等.所以,在Linux系统上工作离不开使用系统提供的命令.要想真正理解Linux系统, ...

  8. 两台centos之间使用scp命令传输文件

    1.将本地文件copy到远程 (1)复制文件 scp local_file remote_username@remote_ip:remote_folder 例如:将/usr/local/aa.png文 ...

  9. 网络抢票黄牛,大部分是骗人的。公布一个骗钱黄牛,QQ:2233261390,QQ群:29443597,支付页面:https://me.alipay.com/q336

    想着给女友买张回广州的回程火车票,抢了3天也没弄到.情急之下找了网络上所谓的黄牛.结果上当受骗.具体经过是这样的: 对方承诺抢到再付款.于是等他抢到后截图给我看,而且可以远程到他的机器去看,我也确实远 ...

  10. Careercup - Microsoft面试题 - 5799446021406720

    2014-05-12 07:17 题目链接 原题: Given below is a tree/trie A B c D e F a<b<e<>>c<>d&l ...